

हिंदुस्तान उर्वरक एवं रसायन लिमिटेड HINDUSTAN URVARAK & RASAYAN LTD.

(A Joint Venture of NTPC, CIL, IOCL, FCIL & HFCL) P.O.-Barauni Urvarak Nagar, Begusarai-851115 (Bihar)

Date: 28.09.2024

To.

Mr. Suresh P Roy,

Regional Officer,

Bihar State Pollution Control Board,

Barauni Industrial area,

Begusarai.

Ref: MoEF&CC, Environmental Clearance Letter No. J-11011/371/2016-IAII (I) dated 29.08.2017.

Sub: Environmental Statement for the financial year ending 31st March 2024.

We are submitting herewith the environmental statement for the financial year ending 31st March 2024 in respect of Ammonia & Urea production plant.

This is for your kind information.

Thanking you.

For & on behalf of HURL, Barauni.

Manager (Environment & Quality Control)

Encl: Environmental Statement for the financial year ending 31st March 2024.

ENVIRONMENTAL STATEMENT FOR THE PERIOD 01.04.2023 TO 31.03.2024

(Submitted as per Rule-14 of the Environment (Protection) Amendment Rules, 1993 of the Environment (Protection) Act, 1986 (29 of 1986) published vide Notification dated 22.04.1993-G.S.R. 386(E) in the Gazette of India (Extraordinary) Part-II Section-3 Subsection (i). No.155 dated 28.04.1993 by the Ministry of Environment and Forests, Government of India: read with the Notification dated 13.02.1993 G.S.R. 329 (E) of the Gazette of India (Extraordinary) Part-II Section-3 Subsection (i) No. 120 dated 13-03-1993)

> "FORM - V" (See Rule 14)

PART-A

GENERAL INFORMATION

1. Company Name

: Hindustan Urvarak & Rasayan Limited

2. Occupier's Name

: Shri. Sanjai Kumar Gupta

3. Registered Office of the Company: Hindustan Urvarak & Rasayan Limited

with address

Core-2, 2nd Floor, SCOPE Minar Laxmi Nagar

District Centre, New Delhi, Delhi 110092

Tel.: 011-22502267

4. Factory Address

Hindustan Urvarak & Rasayan Limited

Barauni, Urvarak Nagar, Begusarai-851115

5. Production capacity

: Ammonia- 2200 MTPD

Urea-3850 MTPD

6. Establishment Year

: Hindustan Urvarak & Rasayan Limited (HURL) was incorporated on 15th June, 2016 as joint venture company by CIL, NTPC, IOCL as the lead promoters

with HFCL & FCIL as two other partners.

7. Date of Last Environmental Statement submitted

: 6th environmental statement.

PART - B

Water and Raw Materials Consumption

(1) Water consumption m³/day:

Category	During the previous* financial year (2022-23)	During the current financial year (2023-24)
Process (m³/Day)	10840	14711
Cooling (m³/Day)	8818	12862
Domestic (m³/Day)	4213	941

Water consumption per MT of Product Output:

Name of Product	During the previous * financial year (2022-23) (m³/MT)	During the current financial year (2023-24) (m³/MT)
Urea	5.29	5.06

(2) Raw Material Consumption -

* Nature of	Process Raw Mater	ial Consumption per unit o	of product output				
consumption	Quality of product						
		financial year	financial year				
		(2022-23)	(2023-24)				
Natural Gas	Natural Gas	1011 Sm ³ /MT	622 Sm3/MT				

^{*} Industry may use codes if disclosing details of raw materials would violate contractual obligations, otherwise all industries have to name the raw materials used.

PART - C

Pollution discharged to environment/unit of output.

(Parameter as specified in the consent issued)

Pollutants	Quantity of pollutants discharged (mass/day)	Concentration of pollutants in discharges (mass/volume)	Percentage of variation from prescribed standards with reasons
(a) Water	Nil	NA	NA
(b) Air	Ambient Air Quality	Ambient Air Quality	Within prescribed
	Monitoring data near	Monitoring data near site is	standards (24/8/1
	site is attached as	attached as Annexure-1.	hourly Avg.)
	Annexure-1.		

STACK EMISSION TEST:

The emission data is attached as Annexure-1.

PART - D

HAZARDOUS WASTES

(As specified under Hazardous Wastes/Management and Handling Rules 1989)

	Thianagement and mananing i	(4100 1000)
Hazardous Wastes	Total Qu	uantity (kg)
	During the previous*	During the current
	financial year (2022-23)	financial year (2023-24)
(a) From process	Nil	Nil
(b) From pollution control facilities	Nil	Nil

PART - E

SOLID WASTE

1.	Total Qu	uantity
	During the previous*	During the current
	financial year (2022-23)	financial year (2023-24)
a) From process	9	~100 MT (Chemical
	NA	sludge from waste water treatment)
b) From pollution control facilities	NA	NA
c) Quantity recycled or reutilized within the Unit.	, NA	NA
d) Sold	NA	NA
e) Disposed	NA	NA

^{*} Previous year Data is from 13.11.2022 to 31.03.2023

PART - F

Please specify the characterizations (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

HURL has adopted waste management plan conforming to different National and local regulations. An Agreement was made with M/s MSTC, Various Wastes mentioned in the Authorization no. HW/B-1934 Patna-10 dated 20.07.2022 shall be sold/disposed as the need arises.

PART - G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production.

HURL is monitoring parameters such as groundwater, surface water and ambient air quality within the plant premises and also outside premise as per EC norms.

PART - H

Additional measures / investment proposed for environmental protection including abatement of pollution, prevention of pollution.

Some of the measures adopted in the design stage itself of the project are mentioned below:

 Plant is based on zero liquid discharge concept i.e.; all effluent water is being treated and reused.

- Continuous monitoring of particulate matter, NO_X & SO_X from all stacks; particulate matter and NH₃ from prilling tower will be done to control emission as per norms.
- Installation of gas detectors at different locations to check fugitive emissions.

PART - I

Any other particulars in respect of environment protection and abatement of pollution.

Plant is based on natural gas as a raw material with state-of-the-art technology to minimize impact on surrounding environment. As per environment management plan (EMP) all required pollution control measures are adopted as integral part of the plant in design stage itself.

World Environment Day was celebrated at HURL Barauni by planting various plants (200 No's) in our Township. The report was submitted to Board via mail dated 05.06.2024.

Plantation drive (Plantation of 7000 saplings) is going on to promote #Ek Ped Maa Ke Naam#Plant4Mother campaign initiated by Hon'ble Prime Minister.

Name & signature of the Occupier

Seal

SANJAI KUMAR GUPTA Project Head Hindustan Urvarak & Rasayan Ltd. Urvarak Nagar, Barauni, Begusarai (Bihar) 851115

Call Sto sto sat

Nitya NITYA LABORATORIES

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

- 9 43, Sector-A1 Ext., Bhalla Enclave, Chann Himmat, Jammu-180 015, J&K (UT), India
- +91-191-2465597
- info@nityalab.com www.nityalab.cor

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

This Compliance Report is the fulfilments of the condition of the Environmental Clearance (EC) vide File No.EC [IA/BR/IND2/61377/2016, J-11011/371/2016-IA II (I)] for the period of May 2023 to March 2024 This report has been prepared by Nitya Laboratories by collecting respective samples in consultation with the State Pollution Control Board (SPCB) officials and Hindustan Urvarak and Rasayan Limited (HURL) officials During the above mentioned period the analysis of the environmental parameters has been conducted by the MOEF&CC recognized Laboratory at Nitya Laboratories, Jammu.

The proposed project is located at Barauni and was commissioned on 18 November 2022 with the capacity of 2200MTPD Ammonia and 3850MTPD Urea in the District Begusarai in the state of Bihar. The commercial production has started from 19 November 2022 with the board name APNA UREA. The area falls in the agricultural belt of the Bihar.

The compliance report fulfils the 19 Nos of Specific Conditions and 17 Nos. of General Conditions led by Ministry of Environment, Forests and Climate Change Rainwater Harvesting and Ground Water charging has been proposed as per Standard Guidelines:

- Guidelines on Artificial Recharge of Water, Central Water Ground Board, Ministry of Water Resources, Gol
- Manual on Artificial Recharge of Ground Water, Central Water Ground Board, Ministry of Water Resources, Gol (2007)
- Rain Water Harvesting and Conservation Manual Consultancy Services Organization, CPWD, Gol (2002)

The Environmental Monitoring report of 11 months w.r.t Air. Water and Noise have been presented separately with the average values. The environmental conditions and the compliance have been found normal as per the Standards. The Air Quality results have been presented through a self-explanatory table with the NAAQ Standards w.r.t the parameter PM₁₀, PM_{2.5}, NO_x. So_x, C₆H₆, CO, Benzo(a) pyrene (BAP), NH3, Ozone, Nickel, Arsenic and Lead. Three sets each of Ground Water Samples and Surface Water Samples have been collected, analyzed in a self-explanatory table, and compared with Drinking Water Standards (IS:10500:2012) The analysis consists of eight nos. of physical parameters, thirteen no's of chemical parameters, nine no's of Heavy metals and three no's of miscellaneous parameters. Noise Quality has also been measured at six different locations in the periphery of the project area. The results have been presented through self-explanatory table consisting of the Standard NAAQS w.r.t noise.

The above report with respect to Air. Water and Noise represents the average values of different sampling stations BOR collected at different time during the study period of May 2023 to March 2024.

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

- 43, Sector-A1 Ext., Bhalla Enclave, Chann Himmat, Jammu-180 015, J&K (UT), India
- **U**+91-191-2465597
- info@nityalab.com www.nityalab.cor

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 – March 2024 for Ammonia –Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

<u>TABLE-1</u> Location of Air Quality Monitoring Stations

Sr. No.	Location of Station	Frequency
1.	HURL Admin Building(SA1)0	Twice a Week
2.	Simariya Village(SA2)	Twice a Week
3.	HURL Residential Township(SA3)	Twice a Week
4.	Chackbali Refinery Road(SA4)	Twice a Week
5.	Chakiya Village (SA5)	Twice a Week
6.	Bihat Village (SA6)	Twice a Week

♥ PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

- 43, Sector-A1 Ext., Bhalla Enclave, Chann Himmat, Jammu-180 015, J&K (UT), India
- +91-191-2465597
- info@nityalab.com www.nityalab.cor

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 – March 2024 for Ammonia –Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

HURL BARAUNI, AIR QUALITY DATA - May 2023 - March 2024

Month	Para	meters	NAAQS Standar	HURL Admin Building	Simariya Village	HURL Residential Township	Chackbali Refinery Road	Chakiy a Village	Bihat Village	
			ds	(SA1)	(SA2)	(SA3)	(SA4)	(SA5)	(SA6)	
	PM10		100	89.67	87.68	90.65	88.56	89.10	91.69	
	PM2.5		60	50.12	51.69	45.69	48.65	52.06	54.38	
	SO ₂	μg/m³	80	16.20	17.66	16.96	18.16	20.76	21.45	
	NOx		80	26.57	22.46	24.56	25.69	28.66	26.46	
	C6H6		5	ND	ND	ND	ND	ND	ND	
May 2023	BAP	ng/m³	1	ND	ND	ND	ND	ND	ND	
	CO	mg/m³	2	0.42	0.39	0.38	0.40	0.51	0.55	
	NH ₃	μg/m³	400	139.66	12.66	11.66	136.62	28.56	33.20	
	Ozone	рулп	180	20.26	23.58	21.69	24.26	26.36	25.86	
	Ni	ng/m ³	20	ND	ND	ND	ND	ND	ND	
	As	119/111	6	ND	ND	ND	ND	ND	ND	
	Pb	µg/m³	1	ND	ND	ND	ND	ND	ND	
		PM10		100	93.71	91.63	91.58	93.1	92.5	93.11
	PM2.5	µg/m³	60	52.67	50.96	48.24	53.43	51.47	50.16	
	SO ₂		80	18.17	18.52	17.78	19.02	19.17	19.63	
	NOx		80	27.18	24.45	22.2	27.6	30.25	27.87	
	C6H6		5	ND	ND	ND	ND	ND	ND	
June	BAP	ng/m³	1	ND	ND	ND	ND	ND	ND	
2023	со	mg/m³	2	0.43	0.47	0.39	0.45	0.53	0.52	
	NH ₃		400	142.13	13.05	13.87	139.8	30.11	34.4	
	Ozone	µg/m³	180	22.14	22.54	20.58	23.08	24.72	24.33	
	Ni	1-3	20	ND	ND	ND	ND	ND	ND	
	As	ng/m³	6	ND	ND	ND	ND	ND	ND	
	Pb	µg/m³	1	ND	ND	ND	ND	ND	ND	
	PM10		100	69.70	69.77	69.71	70.01	69.81	69.82	
	PM2.5		60	45.80	43.83	43.34	45.21	44.47	43.95	
1.1.0000	SO ₂	µg/m³	80	13.22	13.49	13.30	14.21	14.14	14.91	
July 2023	NOx		80	22.48	19.16	17.56		B 95/88	22.73	
	C6H6		5	ND	ND	ND	NOT	ND	ND	
	BAP	ng/m³	1	ND	ND	ND		1000	ND	

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

+91-129-2241021

+91-9013591021, +91-9013552273

labsnitya@gmail.com

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

- 43, Sector-A1 Ext., Bhalla Enclave, Chann Himmat, Jammu-180 015, J&K (UT), India
- +91-191-2465597
- info@nityalab.com www.nityalab.cor

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 – March 2024 for Ammonia –Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

	CO	mg/m ³	2	0.27	0.28	0.26	0.27	0.35	0.30
	NH ₃		400	137.07	10.65	10.86	134.91	25.05	29.23
	Ozone	µg/m³	180	17.15	17.38	15.46	17.71	19.60	19.40
	Ni	ng/m³ -	20	ND	ND	ND	ND	ND	ND
	As	ng/m-	6	ND	ND	ND	ND	ND	ND
	Pb	µg/m³	1	ND	ND	ND	ND	ND	ND
	PM10		100	67.47	67.70	67.82	67.93	67.70	67.7
	PM2.5		60	44.08	42.13	41.97	43.73	42.70	41.9
	SO2	µg/m3	80	11.37	11.91	12.20	12.50	12.55	13.0
	NOx		80	20.36	17.30	15.96	21.31	24.08	20.97
	C6H6		5	ND	ND	ND	ND	ND	ND
	BAP	ng/m3	1	ND	ND	ND	ND	ND	ND
Aug 2023	со	mg/m3	2	0.23	0.23	0.22	0.20	0.25	0.23
	NH3	2	400	138.76	10.50	10.65	75.48	23.38	27.82
	Ozone	µg/m3	180	15.36	15.97	14.30	16.47	18.15	17.77
	Ni		20	ND	ND	ND	ND	ND	ND
	As	ng/m3	6	ND	ND	ND	ND	ND	ND
	Pb	µg/m3	1	ND	ND	ND	ND	ND	ND
	PM10		100	64.66	64.40	64.78	64.81	64.67	64.82
	PM2.5		60	41.45	38.46	39.00	40.55	39.53	38.83
	SO2	µg/m3	80	12.97	12.16	11.06	11.86	11.66	11.17
	NOx		80	18.21	14.87	13.37	18.25	21.52	17.65
	C6H6		5	ND	ND	ND	ND	ND	ND
0.000	BAP	ng/m3	1	ND	ND	ND	ND	ND	ND
Sep. 2023	СО	mg/m3	2	0.18	0.18	0.17	0.16	0.20	0.19
	NH3	Vicesii persik	400	51.91	12.36	10.78	72.36	20.70	24.53
	Ozone	µg/m3	180	12.96	13.55	11.47	13.52	15.22	15.32
	Ni		20	ND	ND	ND	ND	ND	ND
	As	ng/m3	6	ND	ND	ND	ND	ND	ND
	Pb	µg/m3	1	ND	ND	ND	ND	ND	ND
	PM10		100	66.53	67.08	66.67	67.54	67.14	67.25
	PM2.5	-	60	43.30	41.35	44.48	49.13	42.18	44.51
Oct	SO2	µg/m3	80	15.87	14.51	13.53	14.64	14.44	14.04
2023	NOx		80	20.96	17.68	16.94		B 24.43	20.17
	C6H6		5	ND	ND	ND	No.	ND	ND
	BAP	ng/m3	1	ND	ND	ND	WE AUT	MORISED	ND

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD 121004, HARYANA, INDIA

+91-129-2241021

+91-9013591021, +91-9013552273

labsnitya@gmail.com

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

- 43, Sector-A1 Ext., Bhalla Enclave, Chanr Himmat, Jammu-180 015, J&K (UT), India
- +91-191-2465597
- info@nityalab.com & www.nityalab.com

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 – March 2024 for Ammonia –Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

	CO	mg/m3	2	0.26	0.24	0.22	0.20	0.25	0.23	
	NH3		400	54.55	14.50	13.22	75.20	23.26	27.1	
	Ozone	µg/m3	180	16.01	16.93	14.38	16.00	18.38	17.48	
	Ni	20/202	20	ND	ND	ND	ND	ND	ND	
	As	ng/m3	6	ND	ND	ND	ND	ND	ND	
	Pb	µg/m3	1	ND	ND	ND	ND	ND	ND	
	PM10		100	70.35	71.15	71.18	71.85	71.18	71.36	
	PM2.5		60	47.17	45.15	47.90	48.31	46.10	49.36	
	SO2	µg/m3	80	19.82	18.73	18.05	18.97	18.75	18.26	
	NOx		80	25.20	21.82	20.82	25.21	28.58	24.5	
	C6H6		5	ND	ND	ND	ND	ND	ND	
Nov	BAP	ng/m3	1	ND	ND	ND	ND	ND	ND	
2023	СО	mg/m3	2	0.37	0.35	0.36	0.32	0.39	0.33	
	NH3		400	58.42	19.05	17.68	78.75	27.30	31.27	
	Ozone	µg/m3	180	19.82	19.87	18.45	20.37	22.36	22.0	
	Ni		20	ND	ND	ND	ND	ND	ND	
	As	ng/m3	6	ND	ND	ND	ND	ND	ND	
	Pb	µg/m3	1	ND	ND	ND	ND	ND	ND	
		PM10		100	72.68	73.20	73.04	73.65	73.58	72.95
	PM2.5		60	49.90	47.65	50.15	51.04	48.50	50.14	
	SO2	µg/m3	80	22.51	21.05	20.74	22.11	21.66	21.14	
	NOx		80	27.90	24.04	24.21	27.90	31.65	27.18	
	C6H6		5	ND	ND	ND	ND	ND	ND	
Dec	BAP	ng/m3	1	ND	ND	ND	ND	ND	ND	
2023	CO	mg/m3	2	0.58	0.54	0.47	0.44	0.52	0.45	
	NH3		400	60.15	22.04	20.50	80.83	30.33	34.08	
	Ozone	µg/m3	180	22.81	22.09	21.60	23.04	25.31	25.14	
	Ni		20	ND	ND	ND	ND	ND	ND	
	As	ng/m3	6	ND	ND	ND	ND	ND	ND	
	Pb	µg/m3	1	ND	ND	ND	ND	ND	ND	
	PM10		100	68.39	67.31	67.43	68.38	68.90	67.97	
	PM2.5		60	46.03	43.92	44.88	46.01	43.90	45.20	
Jan	SO2	µg/m3	80	18.56	18.31	18.22	19.39	18.06	17.79	
2024	NOx		80	24.83	28.12	24.40	24.60	030.47	20.56	
	С6Н6		5	ND	ND	ND	NO		ND	
	BAP	ng/m3	1	ND	ND	ND	ND	ND 70	ND	

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD 121004, MARYANA, INDIA

+91-129-2241021

+91-9013591021, +91-9013552273

labsnitya@gmail.com

NITYA LABORATORIES

• 43, Sector-A1 Ext., Bhalla Enclave, Chani Himmat, Jammu-180 015, J&K (UT), Indi

+91-191-2465597

■ info@nityalab.com www.nityalab.com

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

	CO	mg/m3	2	0.34	0.41	0.35	0.46	0.41	0.00
	NH3	µg/m3	400	74.59	26.73	29.70	E-GIVIORN	0.44	0.3
	Ozone	pg/ms	180	18.64	21.96	20.89	55.32	17.93	17.4
	Ni	na/m2	20	ND	ND	ND	19.93	17.97	18.3
	As	ng/m3	6	ND	ND	ND	ND	ND	ND
	Pb	µg/m3	1	ND	ND	ND	ND	ND	ND
	PM10		100	64.44	63.36	62.94	ND	ND	ND
	PM2.5		60	42.25	40.28	42.93	62.88	61.60	62.06
	SO2	µg/m3	80	16.43	16.08	The Control of the Co	42.20	40.54	40.94
	NOx		80	21.73	18.89	15.65	16.46	15.51	15.60
	C6H6		5	ND	ND	18.31 ND	22.08	24.45	20.86
Feb	BAP	ng/m3	1	ND	ND	ND	ND	ND	ND
2024	CO	mg/m3	2	0.39	0.33	3.0-397	ND	ND	ND
	NH3	The transfer	400	51.11	16.44	0.29	0.24	0.32	0.24
	Ozone	µg/m3	180	17.56	16.90	15.70	68.78	22.41	25.04
	Ni		20	ND	ND	16.14	16.68	18.29	17.80
	As	ng/m3	6	ND	ND	ND	ND	ND	ND
	Pb	µg/m3	1	ND	ND	ND	ND	ND	ND
	PM10		100	61.56		ND	ND	ND	ND
	PM2.5		60	39.39	60.40	59.94	59.88	58.85	59.06
	SO2	µg/m3	80	13.80	38.88	40.26	39.53	38.14	37.98
	NOx	-	80	18.61	13.35	12.65	13.71	12.51	13.05
	C6H6		5	ND	15.81	15.31	19.20	21.45	17.06
Mar	BAP	ng/m3	1	ND	ND	ND	ND	ND	ND
2024	СО	mg/m3	2		ND	ND	ND	ND	ND
	NH3	giiiio	400	0.36	0.30	0.25	0.21	0.29	0.21
	Ozone	μg/m3 —	180	48.16	13.94	12.74	65.44	19.41	22.09
	Ni		20	21.56	13.93	13.30	13.74	15.29	14.83
	As	ng/m3 —	6	ND	ND	ND	ND	ND	ND
	Pb	µg/m3	1	ND	ND	ND	ND	ND	ND
	PM10	pg/III3	20000	ND	ND	ND	ND	ND	ND
	PM2.5	-	100	69.91	69.60	69.51	70.00	69.54	69.63
		μg/m3		45.20	43.26	44.30	45.91	43.75	44.30
Avg.	NOx	-9,1113	80	16.27	15.81	15.32	16.29	15.85	15.86
	С6Н6		80	22.75	21.24	18.91	23.00	25.25	21.96
	See at these	ng/m3	5	ND	ND	ND	ND	NO	ND
		iig/iii3	1	ND	ND	ND	ND	ND D	ND

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD +91-129-2241021

1 +91-9013591021, +91-9013552273

labsnitya@gmail.com

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

• 43, Sector-A1 Ext., Bhalla Enclave, Chan Himmat, Jammu-180 015, J&K (UT), Indi

C+91-191-2465597

■ info@nityalab.com www.nityalab.co

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

	CO	mg/m3	2	0.24		- 2000000			
-		mgrino	4	0.34	0.34	0.31	0.30	0.35	0.31
_	NH3	μg/m3	400	81.69	16.06	16.35	84.69	24.00	533753
	Ozone	pg/iiio	180	18.44	18.46	16.50			27.30
	Ni		20	ND	ND		18.05	19.53	19.25
-	Ac	ng/m3			0.000	ND	ND	ND	ND
_	As		6	ND	ND	ND	ND	ND	ND
	Pb	μg/m3	1	ND	ND	ND	ND		ND
		рулпо		ND	ND	ND	ND	ND	1

TABLE - 2

CORPORATE OFFICE & CENTRAL LABORATORIES :-

♥ PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

 43, Sector-A1 Ext., Bhalla Enclave, Chan Himmat, Jammu-180 015, J&K (UT), Indi

+91-191-2465597

■ info@nityalab.com www.nityalab.co

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 – March 2024 for Ammonia –Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

Noise Monitoring Assessment Schedule

Sr. No.	Source	Frequency
1.	HURL Admin Building (SN 1)	Once in a Month
2.	HURL Simariya Village (SN 2)	Once in a Month
3.	HURL Township (SN 3)	Once in a Month
4.	HURL Mahna Village (SN 4)	Once in a Month
5.	HURL Chakiya Village (SN 5)	Once in a Month
6.	Near Bihat Village(SN 6)	Once in a Month

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

• 43, Sector-A1 Ext., Bhalla Enclave, Chan Himmat, Jammu-180 015, J&K (UT), Indi

U+91-191-2465597

info@nityalab.com

www.nityalab.co

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

	HUR	L BARAUNI, NO	ISE DATA N	lay 2023 - M	arch 2024			
Month	Parameters	Prescribed Limits in db(A) as per NAAQS Ind./Res. Area	HURL Admin Building (SA1)	Simariya Village (SA2)	HURL Residen tial Townshi p (SA3)	Chackba li Refinery Road (SA4)	Chaki ya Villag e (SA5)	Bihat Village (SA6)
	24 hrs. Avg Leq Value db (A)	-	48.60	48.94	45.13	47.44	42.90	56.52
May- 2023	Day time Avg Leq Value db (A)	75/55/65	52.63	54.69	46.37	50.69	45.69	60.36
	Night time Avg Leq Value db (A)	70/45/55	44.58	43.20	43.89	44.23	40.12	52.69
	24 hrs. Avg Leq Value db (A)		49.90	50.72	44.30	46 09	42.05	54.88
June- 2023	Day time Avg Leq Value db (A)	75/55/65	54.54	56.08	45.23	49.74	44.53	58.90
	Night time Avg Leq Value db (A)	70/45/55	43.65	45.36	43.37	42.45	41.56	50.86
July-2023	24 hrs. Avg Leq Value db (A)	2	68.04	64.25	65.85	58.87	59.70	56.30
	Day time Avg Leq Value db (A)	75/55/65	71.89	68.90	70.12	63.96	65.42	60.45
	Night time Avg Leq Value db (A)	70/45/55	64.21	59.10	61.58	53.78	53.98	52.16
	24 hrs. Avg Leq Value db (A)	51	69.32	65.98	67.58	58.93	61.33	56.66
Aug-2023	Day time Avg Leq Value db (A)	75/55/65	72.66	70.12	71.96	65.74	67.41	61.98
	Night time Avg Leq Value db (A)	70/45/55	65.98	61.85	63.20	52.13	55.26	51.35
	24 hrs. Avg Leq Value db (A)	-	70.23	68.05	65.44	61.04	61.10	59.09
Sep-2023	Day time Avg Leq Value db (A)	75/55/65	73.69	72.65	69.98	67.85	65.89	63.98
	Night time Avg Leq Value db (A)	70/45/55	66.78	63.69	60.39	54.23	57.46	54.21
	24 hrs. Avg Leq Value db (A)	•	68.12	53.96	67.15	62.47	63.67	57.56
Oct-2023	Day time Avg Leq Value db (A)	75/55/65	72.45	58.12	71.52	68.69	E628	62.69
	Night time Avg Leq Value db (A)	70/45/55	64.56	45.64	62.58	55,87	59.21 NORISED	53 12

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

• 43, Sector-A1 Ext., Bhalla Enclave, Chan Himmat, Jammu-180 015, J&K (UT), Indi

+91-191-2465597

info@nityalab.com € www.nityalab.co

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

	Night time Avg Leq Value db (A)	70/45/55	60.69	60.24	59.23	54.70	53.72	53.59
Average	Day time Avg Leq Value db (A)	75/55/65	68.55	68.61	66.45	65.42	62.91	63.28
	24 hrs. Avg Leq Value db (A)	*	64.29	64.55	62.70	60.25	58.03	58.21
	Night time Avg Leq Value db (A)	70/45/55	63.66	63.39	63.92	60.59	56.23	56.39
Mar-2024	Day time Avg Leq Value db (A)	75/55/65	70.12	71.48	72.85	70.26	69.63	67.96
	24 hrs. Avg Leq Value db (A)	-	66.97	66.36	67.33	65.43	62.58	61.58
	Night time Avg Leq Value db (A)	70/45/55	62.89	64.11	65.11	58.69	57.88	54.19
Feb-2024	Day time Avg Leq Value db (A)	75/55/65	71.23	72.56	71.84	69.35	68.21	66.36
	24 hrs. Avg Leq Value db (A)	196	65.14	67.90	68.51	64.36	63.18	59.88
Jan-2024	Night time Avg Leq Value db (A)	70/45/55	64.78	65.24	63.89	60.11	56.71	55.10
	Day time Avg Leq Value db (A)	75/55/65	72.45	71.88	70.52	70.96	66.36	64.48
	24 hrs. Avg Leq Value db (A)	÷	68.36	68.11	66.29	65.12	60.95	59.11
	Night time Avg Leq Value db (A)	70/45/55	63.96	63,89	62.85	58.96	55.24	53.81
Dec-2023	db (A)	75/55/65	71.80	70.58	71.36	72.12	64.53	63.68
	24 hrs. Avg Leq Value db (A)	(#)	66.96	68.45	67.39	65.88	58.89	58.2
	Night time Avg Leq Value db (A)	70/45/55	62.58	66.89	60.88	56.73	57.25	55.68
Nov-2023	db (A)	75/55/65	70.60	72.10	69.45	70.23	66.41	65.3
	24 hrs. Avg Leq Value db (A)		66.78	69.89	65.85	64.69	62.38	60.3

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

• 43, Sector-A1 Ext., Bhalla Enclave, Chan Himmat, Jammu-180 015, J&K (UT), Indi

+91-191-2465597

■ info@nityalab.com www.nityalab.co

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia -Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

TABLE - 3

Ground Water Quality Assessment Schedule

Sr. No.	Source	Parameters	Frequency
1.	HURL Plant (Bore-well)	As per IS: 10500	Once in a Month
2.	HURL Township (Hand Pump)	As per IS: 10500	Once in a Month
3.	Chakiya Village (Hand Pump)	As per IS: 10500	Once in a Month

• 43, Sector-A1 Ext., Bhalla Enclave, Chan Himmat, Jammu-180 015, J&K (UT), Indi

+91-191-2465597

■ info@nityalab.com www.nityalab.co

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

HURL BARAUNI, GROUND WATER QUALITY DATAAVERAGE RESULT May 2023 - March 2024

(Results are expressed in mg/l, unless otherwise stated)

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

Sr. No	. Parameters	Averag	ge Analysis R	lesults	Requirement
		HURL Plant (Bore-well) GW-1	HURL Township (Hand Pump) GW-2	Chakiya Village (Hand Pump) GW-3	(Acceptable)/ Permissible Limits (IS: 10500:2012)
PHYSIC	CAL				
1.0	рН	7.28	7.19	7.23	6.5-8.5
2.0	Temperature	25.75	26.14	26.87	2
3.0	Color	<5	<5	<5	5/15
4.0	Odor	Agreeable	Agreeable	Agreeable	Agreeable
5.0	Taste	Agreeable	Agreeable	Agreeable	Agreeable
6.0	Turbidity (NTU)	ND	ND	ND	1/5
7.0	Total Suspended Solids	15.00	19.50	22.90	
8.0	Total Dissolved Solids	876.00	542.10	567.40	500/2000
CHEMIC	CAL				300/2000
1.0	P-Alkalinity as (CaCO3)	ND	ND	ND	
2.0	Total Alkalinity as (CaCO3)	257.80	301.60	240.80	200/600
3.0	Chloride as CI	61.90	46.90	52.70	250/1000
4.0	Sulphate as (SO4)	28.19	33.48	55.70	200/400
5.0	Nitrate as (NO3)	0.59	0.48	1.09	45/NR
6.0	Fluoride as (F)	ND	ND	ND	1.0/1.5
7.0	Total Hardness as (CaCO3)	264.00	262.50	231.90	200/600
8.0	Calcium as Ca	92.70	84.60	81.60	200/000
9.0	Magnesium as Mg	40.85	36.83	37.80	
10.0	Sodium as Na	31.50	27.56	38.43	
11.0	Potassium as K	2.98	2.89	4.19	-
12.0	Silica as SiO2	20.46	16.70	18.68	(ABORA)
13.0	Iron as Fe	ND	0.23	0.25	0.3/NR

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

- 43, Sector-A1 Ext., Bhalla Enclave, Chan Himmat, Jammu-180 015, J&K (UT), Indi
- +91-191-2465597

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

1.0	Manganese as Mn	ND	ND	ND	0.1/0.3
2.0	Total Chromium as Cr	ND	ND	ND	2007/15 -0-10m
3.0	Lead as Pb	ND	ND	ND	0.05/NR
4.0	Zinc as Zn	0.43	0.27	0.33	0.01/NR
5.0	Cadmium as Cd	ND	ND	ND.	5.0/15
6.0	Copper as Cu	ND	ND	ND	0.003/NR
7.0	Nickel as Ni	ND	ND	ND	0.05/1.5
8.0	Arsenic as As	ND	ND		0.02/NR
9.0	Selenium as Se	ND		ND	0.01
OTHER		ND	ND	ND	0.01/NR
1.0	Oil 8 Oct			V	
1.0	Oil & Grease	ND	ND	ND	0.01/0.03
2.0	Phenolic compound as C6H6OH	ND	ND	ND	0.001/0.002
3.0	Total Coliform (MPN/100 ml) kation, *Calcium as Ca, ** Magnesium as	Absent	Absent	Absent	0.001/0.002

NITYA LABORATORIES

• 43, Sector-A1 Ext., Bhalla Enclave, Chan Himmat, Jammu-180 015, J&K (UT), Indi

+91-191-2465597

■ info@nityalab.com www.nityalab.co

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

TABLE - 4 Surface Water Quality Assessment Schedule

Sr. No.	Source	Parameters	
1.	Ganga River	- Indicated	Frequency
100	Gariga River	As per IS: 10500	Once in 11
2.	Bihat Village (Pond)		Once in a Month
	- mar vinage (Forld)	As per IS: 10500	Once in a Month
3. Baya Nalla	Baya Nallah		Office III a Worth
		As per IS: 10500	Once in a Month
		AN LINE OF A STATE OF	Office III a WORK

HURL BARAUNI, Surface Water Quality Data Average Result May 2023 - March 2024

(Results are expressed in mg/l, unless otherwise stated)

		Avera	age Analysis R	esults	Requirement
Sr. No.	Parameters	Ganga River (SW1)	Bihat Village (Pond) (SW2)	Baya Nallah (SW3)	(Acceptable)/I ermissible Limits (IS: 10500:2012)
PHYSICAL			(5442)		10300.2012)
1.0	рН	7.66	7.00		
2.0	Temperature		7.69	7.72	6.5-8.5
3.0	Color	26.47	26.90	26.58	
4.0	(New Yorks)	<5	23.10	<5	5/15
5.0	Turbidity (NTU)	32.40	34.20	<1	1/5
	Total Suspended Solids	17.10	51.48	30.05	
6.0	Total Dissolved Solids	280.00	974.30	277.30	*
HEMICAL				277.30	500/2000
1.0	Total Alkalinity as (CaCO3)	145.70			
2.0	Chloride as CI		268.30	143.70	200/600
3.0	Sulphate as (SO4)	35.70	213.59	33.30	250/1000
4.0		22.89	43.22	20.79	200/400
	Nitrate as (NO3)	1.08	0.65	0.33	45/NR
5.0	Fluoride as (F)	ND	ND	ND	
6.0	Total Hardness as (CaCO3)	162.90	247.10		1.0/1.5
7.0	Calcium as Ca	65.60	**************************************	156.30	200/600 BOR
8.0	Magnesium as Mg		61.41	69.70	10
77.77	magnesium as Mg	15.54	42.25	8.19 EAL	APRISED III

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD 121004, HARYANA, INDIA +91-9013591021, +91-9013552273

Nitya NITYA LABORATORIES

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

- 43, Sector-A1 Ext., Bhalla Enclave, Chan Himmat, Jammu-180 015, J&K (UT), Indi
- +91-191-2465597
- info@nityalab.com www.nityalab.co

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

9.0	Dissolved Oxygen	5.58	3.20	4.80	
10.0	COD	30.20	108.90		•
11.0	BOD (3 days at 27°C)	6.38		49.10	-
12.0	Sodium as Na	29.89	25.60	10.90	
13.0	Potassium as K		39.68	27.36	-
HEAVY MET	The second secon	2.69	3.58	2.36	•
1.0	Iron as Fe				
		0.20	ND	ND	0.3/NR
2.0	Manganese as Mn	ND	ND	ND	0.1/0.3
3.0	Total Chromium as Cr	ND	ND	ND	0.05/NR
4.0	Lead as Pb	ND	ND	ND	0.01/NR
5.0	Zinc as Zn	0.39	0.53	0.31	
6.0	Cadmium as Cd	ND	ND	ND	5.0/15
7.0	Copper as Cu	ND	ND		0.003/NR
8.0	Nickel as Ni	ND		ND	0.05/1.5
9.0	Arsenic as As		ND	ND	0.02/NR
10.0	Selenium as Se	ND	ND	ND	0.01
THERS	ocionium as se	ND	ND	ND	0.01/NR
1.0	Oil & Grease	ND	ND	ND	0.01/0.03
2.0	Phenolic compound as C6H6OH	ND	ND	ND	0.001/0.002
3.0	Total Coliform (MPN/100 ml) *Calcium as Ca, ** Magnesium as Mg	388.00	726.00	1036.00	0.001/0.002

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

+91-9013591021, +91-9013552273

labsnitya@gmail.com

NITYA LABORATORIES BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES • 43, Sector-A1 Ext., Bhalla Enclave, Chani Himmat, Jammu-180 015, J&K (UT), Indi

+91-191-2465597

info@nityalab.com 🛭 www.nityalab.com

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

TABLE - 5 Flue Gas Monitoring Assessment Schedule

Parameters	E
	Frequency
	,
PM, SOx, NOx & CO	Twice in a Month
	and the Month
PM & Ammonia	Twice in a Month
5 44 527A-758A-8675	I wice in a Month
PM. SOX NOX & CO	
	Twice in a Month
PM CO. NO A A	
FIVI, SOX, NOX & CO	Twice in a Month
	PM, SOx, NOx & CO PM & Ammonia PM, SOx, NOx & CO PM, SOx, NOx & CO

HURL BARAUNI, Flue Gas Monitoring Data Average Result May 2023 - March 2024

Month	Pa	rametore	NAAQS Primar B				
		rameters	Standards	Primary Reformer	HRSG-1	HRSG-2	
May 2023	PM		-	ND (DL-1)	Ne ve		
	NOx		-	58	ND (DL-5)	ND (DL-5	
	SO ₂	mg/Nm ³	-	4600	80	93	
	CO		-	ND (DL-1)	ND (DL-1)	ND (DL-1)	
	PM			9	22	26	
June 2023	June 2023	NOx			ND (DL-5)	ND (DL-5)	ND (DL-5)
		SO ₂	mg/Nm ³	•	298	88	115
	CO	4	-	ND (DL-1)	3	9	
	PM		2	212	9	12	
12020	20 1820	mg/Nm³	•	ND (DL-5)	ND (DL-5)	ND (DL-5)	
July 2023	NO _x			54	111	96	
	SO ₂		•	ND (DL-1)	ND (DL-1)	ND (DL-1)	
	PM		*	10	46	36	
	NOx	+ +	-	ND (DL-5)	ND (DL-5)	ND (DL-5)	
Aug 2023	SO ₂	mg/Nm ³	*	86	103	103	
	CO		-	ND (DL-1)	3		
			-	ND (DL-1)	35	6	
-	PM			ND (DL-5)	ND (DL-5)	15	
Sep	NOx			68		ND (DL-5)	
2023	SO ₂	mg/Nm ³	*		101	99	
	CO	-		ND (DL-1)	6	BOR	
Oct	PM	mg/Nm³	-	ND (DL-1)	9	10	
		g/Ttm		ND (DL-5)	ND (DL-5)	(ND (DL-52)	

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD 121004, HARYANA, INDIA +91-9013591021, +91-9013552273

labsnitya@gmail.com

NITYA LABORATORIES

Himmat, Jammu-180 015, J&K (UT), Indi

+91-191-2465597

■ info@nityalab.com www.nityalab.co

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

			5 7 7.	77.00	16.70	15.70
	CO	-		3.60	5.25	6.38
Average	SO ₂	mg/Nm³	•	87.80	88.90	93.90
	NOx	-		ND (DL-5)	ND (DL-5)	ND (DL-5)
	PM			ND (DL-1)	6	12
	CO	1 +		7	9	6
2024	SO ₂	mg/Nm ³		65	74	74
March	NOx	1 1		ND (DL-5)	ND (DL-5)	ND (DL-5)
	PM		_	ND (DL-1)	8	15
	CO	1		4	3	7
2024	SO ₂	mg/Nm ³		56	68	78
Jan	NOx	-		ND (DL-5)	ND (DL-5)	ND (DL-5)
	PM			ND (DL-1)	10	12
	CO	-		2	4	3
2023	SO ₂	mg/Nm ³		66	78	82
Dec	NOx		-	ND (DL-5)	ND (DL-5)	ND (DL-5)
	PM		-	ND (DL-1)	12	10
	CO	_		3	6	5
2023	SO ₂	mg/Nm ³		61	87	98
Nov	NOx			ND (DL-5)	ND (DL-5)	ND (DL-5
	PM			ND (DL-1)	10	9
	CO			2	8	6
	SO ₂		-	66	99	101
2023	NOx		-			

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

• 43, Sector-A1 Ext., Bhalla Enclave, Chan Himmat, Jammu-180 015, J&K (UT), Indi

+91-191-2465597

info@nityalab.com

www.nityalab.co

Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - March 2024 for Ammonia -Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

HURL BARAUNI, Flue Gas Monitoring Data Average Result May 2023 - March 2024

Month	Para	meters	NAAQS	
			Standards	Prill Tower
May 2023	РМ	mg/Nm³		45.00
	NH ₃		(*)	78.00
June 2023	PM	mg/Nm³		60.00
	NH ₃	mg/mi		80.00
July 2023	PM			49.00
	NH ₃	mg/Nm ³	•	86.00
Aug 2023	PM		*	46.00
7 log 2020	NH ₃	mg/Nm³		81.00
Sep 2023	PM			
Gep 2023	NH ₃	mg/Nm³	¥	42.00
0-4-0000	PM			74.00
Oct 2023	NH ₃	mg/Nm ³		44.00
	PM		*	68.00
Nov 2023	NH ₃	mg/Nm ³	•	42.00
	PM			58.00
Dec 2023 —	NH ₃	mg/Nm³	•	38.00
	PM			48.00
Jan 2024		mg/Nm³	*	39.00
	NH ₃	mg/Mil		48.00
March 2024 —	PM	41.2		36.00
	NH ₃	mg/Nm ³	*	Paris III Market and a
	PM			52.00
Average	NH ₃	mg/Nm³	•	44.10
				67.30

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

THE STATES

Ambient Air Quality Monitoring Data

Period of Monitoring: April 2023 Location: Admn. Building HURL (SA1)

							Parameters	neters					
DAY	DATE	PM ₁₃ (µg/m³)	PM _{2.5} (µg/m³)	SO ₂ (µg/m³)	NO _x (µg/m³)	C ₆ H ₆ (µg/m³)	(a)pyrene	CO (mg/m³)	(hg/m³)	Ozone (µg/m³)	Ni (ng/m³)	As (ng/m³)	Lead (µg/m³)
NAAQ Standards	indards	100	09	80	80	90	01	02	400	180	20	90	1.0
Mon/Tue	03/04.04.23	144	7.0	13.5	24.4	<0.01	<0.01	0.38	131.4	17.6	BDL	BDL	BDL
Fri/Sat	07/08.04.23	128	60	11.6	19.2	<0.01	<0.01	0.33	115.2	16.8	BDL	BDL	BDL
Mon/Tue	10/11.04.23	146	71	13.8	24.7	<0.01	<0.01	0.41	142.0	19.8	BDL	BDL	BDL
Fri/Sat	14/15.04.23	128	62	14.8	24.0	<0.01	<0.01	09.0	236.2	20.9	BDL	BDL	BDL
Mon/Tue	17/18.04.23	110	54	12.3	19.4	<0.01	<0.01	0.53	157.9	17.5	BDL	BDL	BDL
Fri/Sat	21/22.04.23	132	63	13.8	22.2	<0.01	<0.01	0.37	102.2	16.0	BDI	BDL	BDL
Mon/Tue	24/25.04.23	100	90	11.3	18.8	<0.01	<0.01	0.61	155.6	20.7	BDL	BDL	BDL
Fri/Sat	28/29.04.23	136	68	15.3	23.9	<0.01	<0.01	0.54	190.0	18.8	BDL	BDL	BDL
No. of observations	ervations	တ	8	89	00	00	80	ဆ	83	80	80	80	89
Min. Concentration	entration	100	50	11.3	18.8	<0.01	<0.01	0.33	102.2	16.0	BDL	BDL	BDL
Max. Concentration	entration	146	7.1	15,3	24.7	<0.01	<0.01	0.61	236.2	20.9	BDL	BDL	BDL
Average		127.9	62.3	13.3	22.1	<0.01	<0.01	0.47	153.8	18.5	BDL	BDL	BDL
98" percentile	tile	146.0	7.07	15.2	24.7	<0.01	<0.01	0.61	229.7	20.8	BDL	BDL	BDL
NOTE: ADI	NOTE: 201 = Balow Detection	An finnis			-								

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

15 of 47

4 th self self

TABLE - 3.5 Ambient Air Quality Monitoring Data

Period of Monitoring: April 2023 Location: Simariya Village (SA2)

Focasion: Officially	Sill a sill a	1					Parameters	sters					
DAY	DATE	PM ₁₀	PM _{2.5}	SO ₂	NO.	C ₆ H ₈	(a)pyrene	CO (mg/m ₃)	NH ₅ (µg/m³)	Ozone (µg/m³)	(mg/m³)	As (ng/m³)	Lead (ug/m²)
		(Maria	(Indian	00	80	0.5	0.0	02	400	180	20	90	1.0
NAAQ Standards	dards	000	200	00	700	100	1001	030	420	17.5	BDI	BDL	BDL
Mon/Tue	03/04.04.23	129	64	13.4	73.1	×0.01	10.0	20.00	200	1	100	100	200
Enfort	PC PU 80/10	123	80	147	207	<0.01	<0.01	0.27	<20	16.5	BUL	DUL	מקד
rivadi	40/100,04,63	116	67		30.5	<0.01	<0.01	0.52	<20	22.8	BDL	BDL	BDL
Montre	10/11,04,23	446	E.E.	47.4	22.5	<0.01	<0.01	0.58	<20	20.2	BDL	BDL	BDL
rn/sat	14/15/04/23	000	000	44.2	0.04	×0.04	<0.01	0.45	<20	18.9	BDL	BDL	BDL
Mon/I ue	17/18:04:23	071	000	5.4	2.5.5	200	000	1000	00/	40.0	ICA	BDI	BDI
Fri/Sat	21/22,04.23	124	63	13.7	16.6	<0.01	×0.01	0.2.0	220	7.00	100	100	Jugo
Mon/Tria	24/25/04/23	106	54	12.4	16.8	<0.01	<0.01	0.47	<20	22.3	BUL	BUL	DOL
100 man	00/00/04/00	443	N N	150	22.4	<0.01	<0.01	0.51	<20	18.9	BDL	BDL	BDL
rr/oat	20/23.04.23	2 0	200	200	0	8	80	80	00	00	80	80	80
No. of observations	vations	0	0	0 0	007	1000	1001	0.25	<20	16.5	BDL	BDL	BDL
Min. Concentration	tration	106	54	12.4	16.0	<0.0>	10.0	0.40	0.00	0.00	200	100	100
Mary Concentration	anitotica	129	6.4	17.4	30.5	<0.01	<0.01	0.58	<20	27.8	BUL	DOL	DOL
Max. concer	Manon	448.2	28.5	14.5	21.2	<0.01	<0.01	0.42	<20	19.5	BDL	BDL	BDL
Average	1	430.4	0.00	47.4	29 5	<0.01	<0.01	0.57	<20	22.7	BDL	BDL	BDL
sa percentile	9	1.031	0.4.0	16.1	4000								

NOTE: BDL = Below Detection Limit

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

16 of 47

auni transmi

TABLE - 3.6 Ambient Air Quality Monitoring Data

Period of Monitoring: April 2023 Location: HURL Township (SA3)

							Parameters	eters					
DAY	DATE	PM ₁₀ (µg/m³)	PM _{2.6} (µg/m³)	SO ₂ (µg/m³)	(m/6rl)	C _s H _s (µg/m³)	Benzo (a)pyrene (ng/m³)	CO (mg/m³)	(µg/m³)	Ozone (µg/m³)	Ni (mg/m³)	As (ng/m³)	Lead (ug/m²)
NAAQ Standards	ndards *	100	09	80	80	90	10	0.2	400	180	20	90	1.0
Mon/Tue	03/04.04.23	102	90	12.3	19.3	<0.01	<0.01	0.27	<20	15.4	BDL	BDL	BDL
Fri/Sat	07/08,04.23	108	53	11.9	18.5	<0.01	<0.01	0.25	<20	16.1	BDL	BDL	BDL
Mon/Tue	10/11.04.23	113	99	15.3	23.4	<0.01	<0.01	0.32	<20	17.9	BDL	BDL	BDL
Fri/Sat	14/15.04.23	105	51	16.0	21.5	<0.01	<0.01	0.43	<20	18.0	BDL	BDL	BDL
Mon/Tue	17/18.04.23	92	49	13.0	16.4	<0.01	<0.01	0.33	<20	18.2	BDL	BDL	BDL
Fri/Sat	21/22.04.23	117	58	11.3	15.8	<0.01	<0.01	0.20	<20	15.7	BDL	BDL	BDL
Mon/Tue	24/25.04.23	90	46	10.8	14.9	<0.01	<0.01	0.29	<20	19.0	BDL	BDL	BDL
Fri/Sat	28/29.04.23	110	56	13.0	19.6	<0.01	<0.01	0.42	<20	17.5	BDL	HDL	BDL
No. of observations	rvations	80	8	8	co	00	8	80	8	80	80	80	00
Min. Concentration	ntration	06	46	10.8	14.9	<0.01	<0.01	0.20	<20	15.4	BDL	BDL	BDL
Max. Concentration	ntration	117	58	16.0	23.4	<0.01	<0.01	0.43	<20	19.0	BDL	BDL	BDL
Average		105.1	52.4	12.9	18.7	<0.01	<0.01	0.31	<20	17.2	BDL	BDL	BDL
98" percentile	ille	116.5	57.8	15.9	23.1	<0.01	<0.01	0.42	<20	18.9	BDL	BDL	BDL
ALCONO. MAIN IN .													

NOTE: BDL = Below Detection Limit

4 th and the POIL

TABLE - 3.7 Ambient Air Quality Monitoring Data

Period of Monitoring: April 2023 Location: Chakballi - Mahana Road (SA4)

DATE	PM ₁₀	PM _{2.5} (µg/m²)	SO ₂ (µg/m³)	(mg/m³)	C ₆ H _g (µg/m³)	Benzo (a)pyrene (na/m³)	(mg/m³)	NH3 (µg/m³)	Ozone (µg/m³)	(mg/m³)	As (ng/m³)
y.	100	60	80	30	0.5	10	0.2	400	180	20	90
MA 04 23	162	78	16.0	25.4	<0.01	<0.01	0.41	130.0	18.4	BDL	BDL
708 04 23	141	88	143	24.3	<0.01	<0.01	0.36	164.9	19.3	BDL	BDL
1110423	184	00	17.1	27.0	<0.01	<0.01	0.40	131.0	21.0	BDL	BDL
M5 04 23	159	77	16.6	25.9	<0.01	<0.01	0.58	170.3	19.5	BDL	BDL
718 04 23	176	200	14.5	20.7	<0.01	<0.01	0.41	123.8	21.7	BDL	BDL
100 04 03	155	75	13.7	21.0	<0.01	<0.01	0.43	134.6	18.4	BDL	BDL
125 04 23	132	55	12.6	20.3	<0.01	<0.01	0.35	125.7	22.1	BDL	BDL
1790 04 23	477	84	17.8	25.4	<0.01	<0.01	0.58	176.0	21.1	BDL	BDL
One one	00	5 00	000	00	80	80	80	80	80	8	80
e ion	132	15.	12.6	20.3	<0.01	<0.01	0.35	123.8	18.4	BDL	BDL
ion	184	06	17.8	27.0	<0.01	<0.01	0.58	176.0	22.1	BDL	BDL
	160.8	77.8	15.3	23.8	<0.01	<0.01	0,44	144.5	20.2	BDL	BDL
	182.7	89.3	17.7	26.8	<0.01	<0.01	0.58	175.2	22.0	BDL	BDL
w Detection	n Limit										
1 March 170 170 170 170 170 170 170 170 170 170	MAAQ Standards — Mon/Tue 03/04.04.23 Frit/Sat 07/08.04.23 Frit/Sat 14/15.04.23 Frit/Sat 17/18.04.23 Mon/Tue 17/18.04.23 Frit/Sat 28/25.04.23 Frit/Sat 28/25.04.23 Frit/Sat 28/25.04.23 Min. Concentration Max. Concentration Average Mon/Tue Below Detection	04.23 04.23 04.23 04.23 04.23 04.23	22 22 22 23 24 44 25 25 27 27 27	60 60 60 60 60 60 60 60 60 60 60 60 60 6	100 (1997) (1997	10 10<	10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10

80L 80L 80L 80L 80L 80L 80L 80L

BDL BDL BDL

Ambient Air Quality Monitoring Data

							Parameters	eters					
DAY	DATE	PM ₁₀ (µg/m³)	PM _{2.5} (µg/m³)	SO ₂ (µg/m³)	NO _x (µg/m³)	C _e H _e (µg/m²)	Benzo (a)pyrene	CO (mg/m³)	NH ₃ (µg/m³)	Ozone (µg/m³)	Ni (ng/m³)	As (ng/m³)	Lead (µg/m³
NAAQ Standards	ndards	100	09	80	80	90	0.1	02	400	180	20	90	1.0
Mon/Tue	03/04.04.23	116	57	14.9	30.5	<0.01	<0.01	0.43	37.6	19.7	BDL	BDL	BDL
FrivSat	07/08.04.23	125	61	14.7	24.2	<0.01	<0.01	0.34	38.6	18.5	BDI	BDL	BDI
Mon/Tue	10/11.04.23	137	68	16.8	28.5	<0.01	<0.01	0.46	24.7	21.9	BDL	BDL	BDL
Fri/Sat	14/15.04.23	115	62	17.3	29.3	<0.01	<0.01	0.77	41.2	22.2	BDL	BDL	BDI
Mon/Tue	17/18.04.23	128	64	15.1	22.0	<0.01	<0.01	0.38	31.3	24.1	BDL	BOL	BDL
Fri/Sat	21/22.04.23	133	68	14.1	22.4	<0.01	<0.01	0.55	30.3	18.2	BDL	BDL	BDL
Mon/Tue	24/25.04.23	105	56	15.6	26.3	<0.01	<0.01	0.44	25.4	20.0	BDL	BDL	BDL
Fri/Sat	28/29.04.23	122	99	16.5	32.1	<0.01	<0.07	0.71	42.0	25.4	BDL	BDL	BDL
No. of observations	vations	80	80	8	æ	00	89	00	80	80	80	00	00
Min. Concentration	tration	105	56	14.1	22.0	<0.01	<0.01	0.34	24.7	18.2	BDL	BDL	BDL
Max. Concentration	ntration	137	68	17.3	32.1	<0.01	<0.01	0.77	42.0	25.4	BDL	BDL	BDL
Average		122.8	62.6	15.6	26.9	<0.01	<0.01	0.51	33.9	21.3	BDL	BDL	BDL
98" percentile	ile	136.2	67.8	17.2	31.9	<0.01	<0.01	0.76	41.9	25.2	BDI	BDI	BDI

PDIL

TABLE - 3.9 Ambient Air Quality Monitoring Data

Period of Monitoring: April 2023 Location: Bihat Village (SA6)

DAY DATE PM ₁₀ (µg/m²) (µg/m²) (µg/m²) SO ₂ NO ₃ NAAQ Standards 100 60 80 80 Mon/Tue 03/04,0423 116 52 16.0 23.4 Fri/Sat 07/08,0423 120 67 14.7 21.5 Mon/Tue 10/11,0423 134 67 17.8 34.0 Fri/Sat 14/15,0423 136 66 15.5 26.5 Fri/Sat 21/22,0423 136 66 15.5 26.5 Fri/Sat 21/22,0423 138 68 15.0 24.1 Mon/Tue 24/25,0423 102 52 14.4 22.9 Fri/Sat 28/29,0423 121 61 17.8 24.6 No. of observations 8 8 8 8 8	DATE 04.04.23	PM ₁₀ (µg/m³) 100 116	PIM _{2.5}	00	ON.	7	Benzo	0	27.77	Orono	Mi	Ας	Load
4,0423 116 52 16.0 8,0423 120 57 14.7 1,0423 134 67 17.8 5,0423 106 52 13.9 8,0423 130 66 15.5 2,0423 138 68 15.0 5,0423 102 52 14.4 9,0423 121 61 17.8	04.04.23	116	(mg/m³)	(µg/m³)	(hg/m³)	(hg/m³)	(a)pyrene (na/m³)	(mg/m ³)	(µg/m³)	(mg/m³)	(ng/m³)	(mg/m³)	('m/6rl)
1.04.23	04.04.23	116	80	80	80	0.5	100	02	400	180	20	90	1.0
504.23 120 57 14.7 504.23 120 57 14.7 504.23 134 67 17.8 504.23 106 66 15.5 504.23 102 52 14.4 304.23 121 61 17.8	04.04.0.	2	22	18.0	23.4	<0.01	<0.01	0.53	35.5	18.5	BDL	BDL	BDL
204.23 134 67 17.8 5.04.23 136 65 15.5 5.04.23 130 66 15.5 5.04.23 102 52 14.4 9.04.23 121 61 17.8	INP DA 22	120	57	14.7	215	<0.01	<0.01	0.41	48.6	23.6	BDL	BDL	BDL
5.04.23 1.06 5.2 13.9 5.04.23 1.30 6.6 15.5 5.04.23 1.02 5.2 14.4 9.04.23 1.21 6.1 17.8	44 04 93	124	67	17.8	34.0	<0.01	<0.01	0.59	31.6	21.3	BDL	BDL	BOL
504.23 130 66 15.5 5.04.23 138 68 15.0 5.04.23 102 52 14.4 9.04.23 121 61 17.8	11.04.23	100	50	12.0	24.5	<0.01	<0.01	0.61	36.6	21.1	BDL	BDL	BDL
2.04.23 138 68 15.0 5.04.23 102 52 14.4 9.04.23 12.1 61 17.8	10.04.23	130	AS AS	1,00	28.5	<0.01	<0.01	0.50	42.0	24.0	BDL	BDL	BDL
5.04.23 102 52 14.4 3.04.23 12.1 61 17.8 8 8 8	10,04.20	420	0 0	18.0	24.4	<0.01	<0.01	0.47	36.5	17.8	BDL	BDL	BDL
3.04.23 12.1 6.1 17.8 8 8 8 8	22,04,23	400	200	14.4	22.0	<0.01	<0.01	0.54	39.7	22.5	BDL	BDL	BDL
8 8 8 8	20,04,23	701	70	47.0	24.6	1001	<0.03	0.65	39.4	22.4	BDL	BDL	BDL
400 60 400	29.04.23	7	0	0'/1	0.470	000	200	2	00	00	80	œ	80
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1S	0	0	0	0 0	000	2007	0 44	21 6	17.8	RDI	BDL	BDL
25	u u	102	25	13.9	C' 17	<0.0	0.07	1.0	2.00	2	100	100	i d
68 17.8	U.	138	89	17.8	34.0	<0.01	<0.01	0.65	48.6	74.0	BUL	ODL	2 2
120.8 59.4 15.6		120.8	59.4	15.6	25.2	<0.01	<0.01	0.54	38.7	21.4	BDL	BDL	BDL
antile 137.1 67.6 17.8		137.1	67.6	17.8	33.0	<0.01	<0.01	0.64	47.7	24.0	BDL	BDL	BDL

NOTE: BDL = Below Detection Limit

4.2 Characterization of Ground Water Samples

The physico-chemical characteristics of 03 nos, of ground water samples are given hereunder:

Table - 4.2
PHYSICO-CHEMICAL CHARACTERISTICS OF GROUND WATER SAMPLES

Date of Sample Collection: 29-04-2023

	(Results are ex	A	nalysis Result	S	Requirement
SI. No	Parameters	HURL- Bore Well (GW1)	Hand Pump - HURL Township (GW2)	Hand Pump - Chakiya Village (GW3)	(Acceptable / Permissible Limits) (IS:10500:2012
PHY	SICAL				
1	pH	7.5	7.3	7.4	6.5-8.5
2	Temperature (°C)	28.7	28.2	28.5	-
3	Colour, HU	<5	<5	<5	5/15
4	Odour	Agreeable	Agreeable	Agreeable	Agreeable
5	Taste	Agreeable	Agreeable	Agreeable	Agreeable
6	Turbidity (NTU)	<1	<1	<1	1/5
7	Total Suspended Solid	NT	NT	NT	
8	Total Dissolved Solids	280	760	410	500/2000
CHE	MICAL				000/2000
1	P- Alkalinity as CaCO ₃	NIL	NIL	NIL	-
2	Total Alkalinity as CaCO ₃	152	540	324	200/600
3	Chloride as Cl	36	58	22	250/1000
4	Sulphate as SO ₄	40	82	36	200/400
5	Nitrate as NO ₃	1.6	2.4	2.0	45/NR
6	Fluoride as F	< 0.4	<0.4	<0.4	1.0/1.5
7	Total Hardness as CaCO ₃	168	476	292	200/600
8	Ca. Hardness as CaCO ₃	96	320	190	75/200°
9	Mg. Hardness as CaCO ₃	72	156	102	30/100**
10	Sodium as Na	33	100	44	
11	Potassium as K	4	13	6	
12	Silica as SiO _z	12	8	10	-
13	Iron as Fe	0.23	0.52	0.65	0.3/NR
_	VY METALS	Surface and the second			
1	Manganese as Mn	BDL	BDL	BDL	0.1/0.3
2	Total Chromium as Cr	BDL	BDL	BDL	0.05/NR
3	Lead as Pb	BDL	BDL	BDL	0.01/NR
4	Zinc as Zn	0.20	0.22	0.26	5.0/15
5	Cadmium as Cd	BDL	BDL	BDL	0.003/NR
3	Copper as Cu	BDL	BDL	BDL	0.05/1.5
7	Nickel as Ni	BDL	BDL	BDL	0.02/NR
3	Arsenic as As	BDL	BDL	BDL	0.01/0.05
3	Selenium as Se	BDL	BDL	BDL	0.01/NR
HTC	ERS			Chiadonian	The state of the s
1	Mineral Oil	Absent	Absent	Absent	0.5/NR
2	Phenolic Compound as CeHsOH	BDL	BDL	BDL	0.001/0.002
3	Coliform (MPN/100ml)	<100	<100	<100	

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

्रभाकित क्षित्रं 28 of 47 शरकारी विस्तेषक प्रमानस्थीय प्रवेशासाला (क्षेत्रीय प्रवेशा प्रवेश प्राचनस्था प्रवेश विस्तिदेख प्राचनस्था एवं केंद्रवादीट द्विक्वा विस्तिदेख प्राचनस्था एवं केंद्रवादीट द्विका

EN.

4.3 Results & Discussion

The range of concentration of important parameters of 03 nos. of ground water samples were observed as follows:

TABLE - 4.3
Ground Water Quality at a Glance in Comparison to IS: 10500 (2012)

	Range (Resu	e of rec Its expr	orded Concentration ressed in mg/l except pH)	No. of Samples exceeding	No. of Samples exceeding
Parameters	Min.	Max	Requirement (Acceptable / Permissible) Limits(IS:10500:2012)	Acceptable limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012
На	7.3	7.5	6.5 - 8.5	3/3	0/3
Total Dissolved Solids	280	760	500 / 2000	1/3	0/3
Total Alkalinity as CaCO ₃	152	540	200 / 600	2/3	0/3
Total Hardness, as CaCO ₃	168	476	200 / 600	2/3	0/3
Chloride as CI	22	58	250 / 1000	0/3	0/3
Sulphate as SO ₄	40	82	200 / 400	0/3	0/3
Nitrate as NO ₃	1.6	2.4	45 / NR	0/3	0/3
Iron as Fe	0.23	0.65	0.3 / NR	2/3	

The physico-chemical characteristics of the ground water samples were in good agreement with IS:10500 (2012). All the parameters are within the limits specified under Drinking Water Standard (IS:10500-2012). As regards heavy metals, Fe has been recorded with higher concentration and crossed the acceptable limit at all the locations. The ground water after proper filtration and disinfection can be safely used for potable and drinking purposes.

5.2 Characterization of Surface Water Samples

The physico-chemical characteristics of 03 nos, of Surface water samples are given hereunder:

Table - 5.2

PHYSICO-CHEMICAL CHARACTERISTICS OF SURFACE WATER SAMPLES

Date of Sample Collection: 29-04-2023

SI. No.	Parameters	Ganga River SW1	Bihat Village (Pond) SW2	Baya Nala SW3	Requiremen (Acceptable Permissible Limits) (IS:10500:2012
PHY	SICAL				(15.10500.2012
1	Temperature (°C)	28.3	28.0	28.1	1
2	Colour, HU	<5	<5	<5	5/25
3	Turbidity (NTU)	6	8	10	1/5
4	pH	7.2	7.6	7.4	6.5-8.5
5	Total Dissolved Solids	200	650	540	500/2000
6	Suspended Solids	20	34	30	-
CHE	MICAL			- 00	1
1	Total Alkalinity as CaCO ₃	140	326	300	200/600
2	Chloride as CI	20	136	110	250/1000
3	Sulphate as SO ₄	14	54	32	200/400
4	Nitrate as NO ₃	1.3	3.6	2.6	45/NR
5	Fluoride as F	< 0.4	<0.4	<0.4	1.0/1.5
6	Total Hardness as CaCO ₃	150	192	176	200/600
7	Calcium Hardness as CaCO ₃	76	130	106	75/200*
8	Magnesium Hardness as CaCO ₃	74	62	70	30/100
9	Dissolve Oxygen (DO)	7.2	6.6	6.4	30/100
10	COD	3.8	12.6	9.5	
11	BOD (3 days at 27 C)	1.4	4.1	3.0	
12	Sodium as Na	15	165	135	
13	Potassium as K	2	21	17	
HEA	VY METALS	1 20	21	11	
1	Iron as Fe	0.10	0.18	0.14	0.3/NR
2	Manganese as Mn	BDL	BDL	BDL	0.1/0.3
3	Total Chromium as Cr	BDL	BDL	BDL	0.05/NR
4	Lead as Pb	BDL	BDL	BDL	0.01/NR
5	Zinc as Zn	0.16	0.38	0.30	5.0/15
6	Cadmium as Cd	BDL	BDL	BDL	0.003/NR
7	Copper as Cu	BDL	BDL	BDL	0.05/1.5
8	Nickel as Ni	BDL	BDL	BDL	0.02/NR
9	Arsenic as As	BDL	BDL	BDL	0.01/0.05
10	Selenium as Se	BDL	BDL	BDL	0.01/NR
ОТН	ERS				0.011111
1	Mineral Oil	BDL	BDL	BDL	0.5/NR
2	Phenolic Compounds	BDL	BDL	BDL	0.001/0.002
3	Coliform Organisms (MPN/100ml)	690	900	1040	-

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

Ess.

्राणि व्यापन व्यापन उत्तर उत्तर विश्व व्यापन विश्व व्यापन विश्व व्यापन विश्व विष्य विश्व विष्य विष्य

5.3 Results & Discussion

All the physico-chemical characteristics of 03 nos, of surface water samples showed great resemblance with respect to the characteristics like temperature, turbidity, pH, colour, odour, chloride, sulphate, total alkalinity, total hardness, TDS and heavy metals, etc. The range of concentrations of the parameters of surface water characteristics were observed as follows:

TABLE - 5.3 Surface Water Quality at a Glance

	Co	ncentra	of recorded ation (Results mg/I except pH)	No. of Samples	No. of Samples exceeding
Parameters	Min.	Max.	Requirement (Acceptable / Permissible) Limits (IS:10500:2012)	exceeding Acceptable limits as per IS:10500:2012	Permissible Limits as per IS:10500:2012
PH	7.2	7.6	6.5-8.5	3/3	0/3
Turbidity	6	10	1/5	3/3	3/3
Total Dissolved Solids	200	650	500 / 2000	2/3	0/3
Total Alkalinity as CaCO ₃	140	326	200 / 600	2/3	0/3
Total Hardness, as CaCO ₃	150	192	200 / 600	0/3	0/3
Chloride as CI	20	136	250 / 1000	0/3	0/3
Sulphate as SO ₄	14	54	200 / 400	0/3	0/3
Nitrate as NO ₃	1.3	3.6	45/NR	0/3	0/3
Iron as Fe	0.10	0.18	0.3 / NR	0/3	-

TABLE - 5.4
Characterization of SWQ as per Bathing Standard Prescribed by CPCB (Series PCLS:02/2010)

Criteria	Prescribed Limit	Remarks
Coliform MPN/100 ml	Desirable - 500 Permissible - 2500	Recommended
На	6.5-8.0	Slightly higher than the Standard
DO	5 mg/l or more	Recommended
BOD 3 days at 27 C	3 mg/l or less	No SW recommended for bathing

TABLE - 6.4 AMBIENT NOISE LEVEL DATA - AROUND BOUNDARY WALLS

	Name of Location	Noise Level, dB(A)		
SI. No.		Day	Night	
1.	Eastern Boundary	55.8	45.4	
2.	Western Boundary	56.3	45.1	
3.	Northern Boundary	57.2	48.8	
4.	Southern Boundary	56.0	46.5	

Table - 6.5 SUMMARY OF AMBIENT NOISE LEVEL

	24-hrs Avg Loo	Day time	Night time Lea	Prescribed Limits in dB(A) as per NAAQS		
Sampling Locations	Value dB(A)	Value dB(A)	Value dB(A)	Category of Area	Day Time	Night Time
Admn. Building HURL (SN1)	53.3	54.7	47.0	Industrial Area	75	70
Simariya Village (SN2)	50.7	52.1	44.2	Residential Area	55	45
HURL Township (SN3)	49.5	51.0	42.2	Residential Area	55	45
Mahana Village (SN4)	51.7	53.1	45.0	Residential Area	55	45
Chakiya Village (SN5)	52.5	54.1	43.8	Residential Area	55	45
Bihat Village(SN6)	52.3	53.8	44.4	Residential Area	55	45

6.3 STANDARD FOR NOISE

The Government of India, in exercise of its power under section 16(2)(h) of the Air (Prevention and Control of Pollution) Act 1981, notified the ambient air quality standards in respect of noise (which has been included as an air pollutant under section 20 of the Amended Air Act of 1987) as follows:

Table - 6.6

Area	Category of Area	Limits in Decibels, dB (A)			
	Category of Area	Day Time	Night Time		
Α	Industrial Area	75	70		
В	Commercial Area	65	55		
С	Residential Area	55	45		
D	Silence Zone	50	40		

NOTE

- 1. Day Time is reckoned between 6 AM and 10 PM.
- 2. Night Time is reckoned between 10 PM and 6 AM.

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

39 of 47 फोकर जाकारी (देखनेक व्यक्तिमा प्रधानकारों के के प्रधानकारों प्रधानकारों के के (के देख प्रधान प्रधानकार प्रकार प्रधानकार) प्रधानकारों पूर्व देखना का उपामनी

Sw.

6.2 Results

The recorded results are as follows.

Table - 6.2

AMBIENT NOISE LEVEL DATA DURING DAY TIME (HOURLY)

Time			Noise Lev	vel, dB(A)		SN ₆
(Hrs)	SN,	SN ₂	SN ₃	SN ₄	SN ₅	
6.00 -7.00	49.1	46.3	45.1	46.7	47.2	47.5
7.00-8.00	50.4	46.9	45.6	47.8	48.3	48.1
8.00-9.00	50.9	47.5	46.8	48.4	48.9	48.7
9.00-10.00	50.1	48.3	48.1	49.2	51.2	50.5
10.00-11.00	52.2	49.7	50.7	50.7	52.7	51.6
11.00-12.00	53.8	52.0	52.6	53.1	54.1	53.8
12.00-13.00	54.8	54.0	53.9	55.0	56.1	55.7
13.00-14.00	56.6	55.8	54.8	56.9	58.0	57.6
14.00-15.00	59.6	56.2	55.4	57.3	57.5	57.8
15.00-16.00	58.3	55.2	53.4	56.3	57.4	57.0
16.00-17.00	57.0	54.8	52.1	55.9	57.0	56.6
17.00-18.00	54.4	52.2	50.2	53.3	54.3	54.0
18.00-19.00	54.0	50.5	47.5	51.5	52.5	52.2
19.00-20.00	53.6	48.5	46.3	48.9	49.9	50.1
20.00-21.00	52.3	47.5	45.6	48.0	49.0	49.2
21.00-22.00	51.8	47.0	44.6	47.4	47.9	48.3
Minimum	49.1	46.3	44.6	46.7	47.2	47.5
Maximum	59.6	56.2	55.4	57.3	58.0	57.8
Average	53.7	50.8	49.6	51.7	52.6	52.4
Leo (Day)	54.7	52.1	51.0	53.1	54.1	53.8

Table - 6.3

AMBIENT NOISE LEVEL DATA DURING NIGHT TIME

Time	Noise Level, dB(A)						
(Hrs)	SN	SN ₂	SN ₃	SN ₄	SN ₅	SN ₆	
22,00-23.00	49.9	45.7	43.8	46.6	44.7	46.5	
23.00-24.00	47.8	44.7	42.5	46.1	43.4	44.6	
24.00-1.00	46.9	43.0	41.3	44.3	43.0	44.1	
1.00-2.00	44.0	42.3	41.2	42.7	42.5	42.5	
2.00-3.00	45.2	43.5	41.1	43.9	42.5	42.7	
3.00-4.00	45.8	44.0	41.4	44.4	43.3	43.3	
4.00-5.00	46.5	44.6	42.3	45.0	44.3	43.9	
5.00-6.00	47.5	45.1	43.2	45.6	45.9	45.9	
Minimum	44.0	42.3	41.1	42.7	42.5	42.5	
Maximum	49.9	45.7	43.8	46.6	45.9	46.5	
Average	46.7	44.1	42.1	44.8	43.7	44.2	
Leg (Night)	47.0	44.2	42.2	45.0	43.8	44.4	

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

आकोश छोठाँ 38 of 47
आकोश छोठाँ 38 of 47
सार्वाशीय प्राणीय प्राणीय की किल्ला की किल्ला की किल्ला को अवस्था

