COMPLIANCE REPORT

(MoEF & CC File No J-11011/371/2016-IAII (I) dated 29/08/2017) For the period

October 2020 - March 2021

Submitted

To

MoEF&CC, Regional Office (ECZ), Ranchi

Ammonia Urea Fertilizer Plant

(2200MTPD Ammonia & 3850MTPD Urea)

Barauni

June 2021

हिंदुस्तान उर्वरक एवं रसायन लिमिटेड HINDUSTAN URVARAK & RASAYAN LTD. (A joint Venture of NTPC, CIL, IOCL, FCIL & HFCL)

Hindustan Urvarak&Rasayan Limited

(A Joint Venture of NTPC, CIL, IOCL, FCIL & HFCL)
Barauni Urvarak Nagar, Begusarai-851115

Ref. No.: HURL/BR/ECZ/ 5

Date: 08/06/2021

To,

Regional Office (Eastern Central Zone)

Ministry of Environment, Forest and Climate Change,

Bungalow No. A-2,

Shyamali Colony,

Ranchi - 834002.

Subject: Ammonia (2200 MTPD) Urea (3850 MTPD) Fertilizer Project at Barauni in District Begusarai, Bihar of M/s Hindustan Urvarak & Rasayan Limited (HURL)-Compliance Report for Oct.-2020 to March-2021.

Ref: (i) MoEF&CC, Environmental Clearance Letter No. J-11011/371/2016-IAII (I) dated 29.08.2017.

Dear Sir,

With reference to the subject as mentioned above, please find attached herewith the compliance report for the period October-2020 to March-2021.

For & on behalf of

(Sandeep Sharma)

Manager

Hindustan Urvarak & Rasayan Ltd. (HURL) Barauni Urvarak Nagar, Begusarai-851115

Encl: As above.

CC: Regional officer,

Bihar State Pollution Control Board

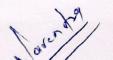
Barauni Industrial area

Begusarai

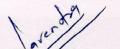
CC: Regional Directorate - KOTKATA

Central Pollution Control Board.

Ministry of Environment, Forest and Climate Change, Govt. of India,


'South end Conclave' Block-502, 5th & 6th Floor, 1582,

Razidanga, Main Road, Kolkata-700107


SI.					
No.	EC Conditions	Compliance status			
-	A) Specific Conditions				
1.	Emissions limits for the pollutants from the DG sets and the stack height, shall be in conformity with the extant statuary regulations and/or the CPCB guidelines in this regard.	NBPDCL through dedicated 33KV line for			
2.	To control source emissions, scrubber and/or other suitable pollution control device shall be installed to meet the prescribed Particulate Matter emission norms of 50 mq/Nm3, and also the NMQS.	This has been addressed in the Feasibility Report of the project during design stage of the plant itself and shall be complied during operation phase.			
3.	Fresh water requirement shall not exceed 5.36 cum/ton of Urea production. Fresh water shall be sourced from River Ganga only after the required permission from the concerned authority. During construction phase, ground water may be used after prior permission in this regard from the concerned regulatory authority.	Fresh water supply will be sourced from river Ganga during plant operation & production phase. Requisite NOC has been accorded by Central Water Commission (CWC). Fresh water consumption will be as per given condition. For construction purpose, ground water is being used with prior NOC from Central Ground Water Authority vide NOC no: CGWA/NOC/IND/ORIG/2018/3333			
		dated:-22/03/2018.			
4.	As already committed by the project proponent, no waste/treated water shall be discharged outside to ensure ZLD. The effluent discharge, if any, shall meet the standards for 'Nitrogenous Fertilizer Industry' prescribed under the Environment (Protection) Rules, 1986.	The Project is based on Zero liquid discharge concept. All effluents are to be treated in ETP inside the plant and reused.			
5.	The project proponent shall develop greenbelt in an area of 33% i.e., nearly 116 acres out of 350 acres of plant area of the project. The green belt of 30 m width around periphery shall be provided.	Presently construction activity is in progress and new peripheral boundary and road is yet to be developed. Tree plantation around periphery will be complied as per given condition after completion road and wall work.			
6.	5000 trees per year in 5 year shall be planted in nearby villages with the consultation of the villagers. Survival rate of plants shall be reported to RO, MoEF&CC in 6 monthly compliance report.	To be complied.			
7.	All the commitments made during the Public Hearing/ Public Consultation meeting held on 29th April, 2017 shall be satisfactorily implemented and	All the commitments made during Public Hearing/Public Consultation meeting held			

	adequate budget provision shall be made accordingly.	on 27 th April, 2017 shall be satisfactorily
8.		implemented by HURL Barauni.
	At least 2.5 % of the total cost of the project shall be earmarked towards the Enterprise Social Commitment (ESC) based on local needs and action plan with financial and physical breakup/details shall be prepared and submitted to the Ministry's Regional Office at Ranchi. Implementation of such program shall be ensured accordingly in a time bound manner.	Enterprise Social Commitment (ESC) will be carried out as per laid down condition by the Project. Detail action plan along with budget have been taken up by HURL.
9.	A regular environment manager having post graduate qualification in environmental sciences/environmental engineering to be appointed for looking after the environmental management activities of the proposed plant.	The EC conditions relating to establishment of Environmental Cell have been complied and office order sent to your esteemed office. As far as qualification in environmental sciences/ environmental engineering is concerned, recruitment at HURL HO level is under process.
10.	Continuous online (24x7) monitoring system for emissions and effluent generation shall be installed for flow/discharge measurement and the pollutants concentration within the plant. Data shall be uploaded on company's website and provided to the respective Ra of MoEF&CC, CPCB and SPCB.	This will be implemented during operation phase & production phase.
11.	The unit shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling. Fire fighting system shall be as per the norms.	This has been addressed in the Feasibility Report and RRA conducted for the Project and recommendation shall be complied with in the plant during operation phase & production phase.
12.	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Regular health check-up/monitoring of the construction labourers are being done and records have been maintained for the same. The same shall also be complied with in the plant during operation & production phase. All the construction workers are ensured to be equipped with PPEs such as helmets, hand gloves, boots etc. before entering into construction site.
13.	Storage of hazardous raw material shall not exceed more than 7 days.	The hazardous raw material required for construction activities are being stored in the designated place away from the construction area. During plant operation and production stage, storage of raw materials addressed in the Feasibility Report and EIA (HAZID &

		ENVID) report of the Project, shall be				
14.	Urea dust shall be controlled by prescribed	complied with the stated condition.				
	standard technique.	This has been addressed in the Feasibility Report and EMP of the Project and shall				
	- Tanada a tesimilyae.	be complied with during operation phase.				
15.	In Urea Plant, particulate emissions shall not	This has been addressed in the Feasibility				
	exceed 50 mq/Nm³, Monitoring of Prilling Tower					
	shall be carried out as per CPCB guidelines.	be complied with during operation phase.				
16.	The levels of PM ₁₀ (Urea dust), SO ₂ , NO _x , Ammonia,	Environmental Monitoring w.r.t. Air,				
	Ozone and HC shall be monitored in the ambient air	Water and Noise during construction				
	and displayed at a convenient location near the	phase is being carried out by MoEF&CC				
	main gate of the company and at important public	recognized & NABL accredited				
	places. The company shall upload the results of	environmental laboratory of the HUBERT				
	monitored data on its website and shall update the	Enviro, Chennai which is hired as a third				
	same periodically. It shall simultaneously be sent to	party by Projects and Development India				
	the Regional office of MoEF&CC, the respective	Ltd (PDIL), Noida. (Monitoring Report for				
	Zonal office of CPCB and the SPCB.	October 2020 to March 2021 attached as				
		Annexure- I).				
		Six monthly compliance reports with				
		monitoring results uploaded on HURL's				
		website and its regular updation will be				
		done periodically. Simultaneously, every				
		six monthly compliance report will also be				
		sent to the Regional office of MoEF&CC,				
		the respective Zonal office of MoEF&CC				
17.	In plant, control measures for checking fugitive	and BSPCB as per stated condition.				
	emissions from all the vulnerable sources shall be	This has been addressed in the Feasibility Report and EMP of the Project and shall				
	provided. Fugitive emissions shall be controlled by	be complied with in the plant during				
	providing closed storage, closed handling &	operation and production stage.				
	conveyance of chemicals/materials, multi cyclone	The water sprinkling is being done on				
	separator and water sprinkling system. Fugitive	regular basis for dust suppression in and				
	emissions in the work	around construction site. Air Quality is				
	zone environment, product, raw materials storage	being monitored in work zone				
	area etc. shall be regularly monitored. The	environment as per monitoring plan for				
	emissions shall conform to the limits stipulated by	assessment of pollution level during				
	the SPCB.	construction phase.				
18.	The company shall obtain Authorization for	This has been addressed in the Feasibility				
	collection, storage and disposal of hazardous waste	Report and EMP of the Project and given				
	under the Hazardous=waste "(Management,	condition shall be complied with before				
	Handling and Trans-Boundary Movement) Rules,	the plant becomes operational.				
	2016 and amended as on date for management of Hazardous wastes. Measures shall be taken for fire					
19.	'fighting facilities in case of emergency. Provision shall be made for the housing for the	_				
10.	construction labour within the site with all	• For constructions workers rest shed				
		with necessary infrastructure such as				
	necessary infrastructure and facilities such as fuel					

	for cooking, mobile toilets, mobile sewage treatment plant, safe drinking water, medical health care, creche etc. The housing may be in the form of temporary structure to be removed after the completion of the project. All the construction wastes shall be managed so that there is no impact on the surrounding environment.	 provided at identified locations. Canteen facilities have been provided by contractors near rest shed for workers.
1.	B) General Conditions	
	The project authorities shall strictly adhere to the stipulations made by the State Pollution Control Board (SPCB), State Government and any other statutory authority.	HURL shall strictly comply with the conditions laid by BSPCB, Bihar State Government and any other statutory authority during construction and operation phase of the plant.
2.	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	This condition will be complied with as stated.
3.	The locations of ambient air quality monitoring stations shall be decided in consultation with the State Pollution Control Board (SPCB) and it shall be ensured that at least one stations is installed in the upwind and downwind direction as well as where maximum ground level concentrations are anticipated.	The locations of ambient air quality monitoring have been decided in consultation with the Bihar State Pollution Control Board (BSPCB) and HURL officials for monitoring of Air Quality during construction phase. 06 Nos. of AAQMS have been installed in the project area, out of which one station is selected in up-wind (East) and one station is selected in down-wind (West) directions.
4.	The National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R. No. 826(E) dated 18th November, 2009 shall be followed.	All efforts are being made to contain the PM ₁₀ & PM _{2.5} values within the standard limits at construction site. Regular water sprinkling are being done for dust suppression.
5.	The overall noise levels in and around the plant area shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all	Noise levels are being monitored at six locations and all recorded values are within the norms. (Data attached as annexure-1)

	sources of noise generation. The ambient noise levels shall conform to the standards prescribed under the Environment (Protection) Act, 1986 Rules,1989 viz. 75 dBA (day time) and 70 dBA (night time).	
6.	The Company shall harvest rainwater from the roof tops of the buildings and storm water drains to recharge the ground water and use the same water for the process activities of the project to conserve fresh water.	control room, operator room, maintenance building, canteen
7.	Training shall be imparted to all employees on safety and health aspects of chemicals handling. Pre-employment and routine periodical medical examinations for all employees shall be undertaken on regular basis. Training to all employees on handling of chemicals shall be imparted.	This condition will be complied with during plant operation and production phase.
8.	The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environmental management, risk mitigation measures and public hearing shall be implemented.	This condition will be complied in totality as stated.
9.	The company shall undertake all relevant measures for improving the socioeconomic conditions of the surrounding area. CSR activities shall be undertaken by involving local villages and administration.	Once the plant becomes operational, CSR activities will be undertaken by involving local villages and administration as per rule and government guidelines.
10.	The company shall undertake all eco- developmental measures including community welfare measures for overall improvement of the environment.	Once the plant becomes operational, CSR activities will be undertaken by involving local villages and administration as per rule and government guidelines.
11.	A separate Environmental Management Cell equipped with full fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.	Presently in construction phase, monitoring function of specified parameters are being done by MoEF&CC recognized & NABL accredited environmental laboratory of the HUBERT Enviro, Chennai which is hired as a third party by Projects and Development India Ltd (PDIL), Noida. However, the stated point is addressed in the Feasibility Report of the Project and suitable facility will be developed to carry

		out the Environmental Management and
12	The	Monitoring functions.
12.	The company shall earmark sufficient funds towards capital cost and recurring cost per annum to implement the conditions stipulated by the Ministry of Environment, Forest and Climate change as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so earmarked for environment management pollution control measures shall not be diverted for any other purpose.	HURL.
13.	A copy of the clearance letter shall be sent by the project proponent to concerned Panchayat, ZilaParisad/Municipal Corporation, Urban local Body and the local NGO, if any, from whom suggestions! representations, if any, were received while processing the proposal.	The same has been complied and receiving copy sent to your good office.
14.	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated Environmental Clearance conditions including results of monitored data (both in hard copies as well as by-mail) to the respective Regional Office of MoEF&CC, the respective Zonal Office of CPCB and SPCB. A copy of Environmental Clearance and six monthly compliance status reports shall be posted on the website of the company.	The same is being complied with.
15.	The environmental statement for each financial year ending 31st March in Form-V as is mandated shall be submitted to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental clearance conditions and shall also be sent to the respective Regional Offices of MoEF&CC by-mail.	Complied.
16.	The project proponent shall inform the public that the project has been accorded' environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be seen at Website of the Ministry at http://moef.nic.in.This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of	Complied.

	the locality concerned and a copy of the same shall be forwarded to the concerned Regional Office of the Ministry.	
17.	The project authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.	Complied.

ANNEXURE- I

This Compliance Report is the fulfillments of the condition of the Environmental Clearance (EC) vide File No. EC [IA/BR/IND2/61377/2016, J-11011/371/2016-IA II(I)] dated 29.08.2017 for the period of October 2020 to March 2021. This report has been prepared by Projects and Development India Limited (PDIL) by collecting respective samples in consultation with the State Pollution Control Board (SPCB) officials and Hindustan Urvarak and Rasayan Limited (HURL) officials. During the above mentioned period the analysis of the environmental parameters has been conducted by the MoEF&CC recognized laboratory at PDIL, Noida, NABL accredited laboratories of HUBERT Enviro, Chennai & ECO PRO ENGINEERS PVT. LTD., Ghaziabad, under the strict supervision of the Government Analyst.

The proposed project is located at Barauni with the capacity of 2200MTPD Ammonia and 3850MTPD Urea in the District Begusarai in the State of Bihar.

The compliance report fulfills the 19 nos. of Specific Conditions and 17 nos. of Standard Conditions led by Ministry of Environment, Forests and Climate Change (MoEF&CC). Rainwater Harvesting and Ground Water charging has been proposed as per Standard Guidelines:

- a) Guidelines on Artificial Recharge of Water, Central Water Ground Board, Ministry of Water Resources, Gol (2000)
- b) Manual on Artificial Recharge of Ground Water, Central Water Ground Board, Ministry of Water Resources, Gol (2007)
- c) Rain Water Harvesting and Conservation: Manual, Consultancy Services Organization, CPWD, Gol (2002)

The Environmental Monitoring report of 6 months w.r.t. Air, Water and Noise have been presented separately with the average values. The Air Quality results have been presented through a self explanatory table with the NAAQ Standards w.r.t. the parameter PM₁₀, PM_{2.5}, NO_x, SO₂, C₆H₆, Benzo(α)pyrene, CO, NH₃, O₃, Ni, As and Pb. Three sets, each of Ground Water Samples and Surface Water Samples have been collected, analyzed in a self explanatory table and compared with Drinking Water Standards IS10500:2012. The analysis consists of maximum eight nos. of physical parameters, thirteen nos. of chemical parameters, maximum ten nos. of heavy metals and three nos. of miscellaneous parameters. All the parameters are within the limits specified under Drinking Water Standard (IS:10500:2012). Noise Quality has also been measured at six different locations in the periphery of the project area. The results have been presented through self explanatory table consisting of the Standard NAAQS w.r.t. noise.

The above report with respect to Air, Water and Noise represents the average values of different sampling stations collected at different time during the study period of October 2020 to March 2021.

प्राजिए।

प्राजिए।

प्राजिएस एउ डेवलपमेंट इंडिया लिमिटेड

प्राजिवट्स एउ डेवलपमेंट इंडिया लिमिटेड

प्राजिवट्स एउ डेवलपमेंट का उपक्रम)

भारत सरकार का उपक्रम)

भिनी रत्ना-1कंपनी

भिनी रत्ना-1कंपनी

गी.डी.आई.एल. भवन ए-14,सेक्टर-1

गी.डी.आई.एल. भवन ए-14,सेक्टर-1

Toronto.

HURL, BARAUNI, AIR QUALITY DATA (Year: 2020-2021)

Period	Parameters	Admn. Building HURL (SA1)	Simariya Village (SA2)	Near HURL Township (SA3)	Mahna Village (SA4)	Chakiya Village (SA5)	Bihat Village (SA6)	NAAQ Standard Annual/24/8/1 Hly, Avg.
	PM ₁₀	79.38	79.25	80.25	77.88	82.63	80.13	60/100
Ava	PM _{2.5}	54.50	49.50	48.38	49.25	48.38	50.75	40/60
	SO ₂	11.59	13.29	12.51	12.74	13.24	13.36	50/80
	NOx	22.05	21.88	21.28	22.24	22.56	23.38	40/80
	C ₆ H ₆	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	05
Avg. (October	Benzo (α)pyrene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	01
2020)	co	0.67	0.64	0.68	0.60	0.51	0.56	
	NH ₃	BDL	BDL	BDL	BDL	BDL	BDL	02/04 100/400
	0,	13.79	13.28	22.11	13.26	23.04	23.33	The second secon
	Ni	BDL	BDL	BDL	BDL	BDL	BDL	100/180
	As	BDL	BDL	BDL	BDL	BDL	BDL	20
	Pb	BDL	BDL	BDL	BDL	BDL	BDL	06
	PM ₁₀	79.63	82.75	79.80	78.90	79.40	79.60	0.5/1.0 60/100
	PM ₂₅	49.88	52.63	49.90	52.90	50.60	51.50	40/60
	SO ₂	11.83	12.93	12.70	12.50	12.90	12.70	The state of the s
	NOx	22.49	22.98	21.50	22.00	23.00	23.40	50/80 40/80
	C _e H _e	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	05
Avg. (November	Benzo (a)pyrene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	01
2020)	CO	0.70	0.63	0.66	0.60	0.55	0.58	02/04
	NH ₃	BDL	BDL	BDL	BDL	BDL	BDL	100/400
	O ₃	13.61	13.34	22.40	22.40	22.60	22.50	100/180
	Ni	BDL	BDL	BDL	BDL	BDL	BDL	20
	As	BDL.	BDL	BDL	BDL	BDL	BDL	06
	Pb	BDL	BDL	BDL	BDL	BDL	BDL	0.5/1.0
	PM ₁₀	110.3	98.3	100.6	104.9	105.1	90.0	60/100
	PM _{2.5}	73.0	59.9	59.3	66.9	63.8	56.3	
	SO ₂	15.7	12.3	16.2	15.8	14.9	18.9	40/60
	NOx	35.0	23.2	29.3	26.0	30.1	28.1	50/80
	C ₆ H ₆	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	40/80
Avg. (December	Benzo (a)pyrene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	05 01
2020)	CO	1.28	0.63	0.58	1.17	1.23	0.69	02/04
	NH ₃	BDL	BDL	BDL	BDL	BDL	BDL	100/400
	O ₃	14.3	13.3	22.0	16.9	24.0	17.7	100/180
	Ni	BDL	BDL	BDL	BDL	BDL	BDL	20
	As	BDL	BDL	BDL	BDL	BDL	BDL	06
	Pb	BDL	BDL	BDL	BDL	BDL	BDL	
	PM ₁₀	108.5	97.8	99.4	103.8	104.3	89.5	0.5/1.0 60/100
	PM ₂₅	72.4	61.0	59.3	60.6	62.4	55.4	40/60
	SO ₂	15.5	12.4	16.6	16.1	15.5	18.9	50/80
	NO _x	33.5	23.4	28.6	25.8	30.0	28.5	40/80
	C ₆ H ₆	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	05
Avg. (January	Benzo (a)pyrene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	01
2021)	co	1.27	0.65	0.65	1.22	1.24	0.74	02/04
	NH ₃	BDL	BDL	BDL	BDL	BDL	BDL	100/400
	O ₃	14.4	13.4	23.0	17.3	25.1	18.4	100/180
	Ni	BDL	BDL	BDL	BDL	BDL	BDL	20
	As	BDL	BDL	BDL	BDL	BDL	BDL	06
	РЬ	BDL	BDL	BDL	BDL	BDL	BDL	0.5/1.0
	PM ₁₀	106.8	95.8	98.9	103.9	104.5	88.6	60/100
	PM _{2.5}	69.3	63.6	58.9	59.9	62.5	52.6	40/60
	SO ₂	15.5	12.5	17.3	16.8	16.2	19.7	50/80
Avg.	NOx	32.0	23.9	31.0	27.3	31.4	29.8	40/80
February	C ₈ H ₆	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	05
2021)	Benzo (a)pyrene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	01
	CO	1.30	0.65	0.65	1.17	1.39	0.80	02/04
	NH ₃	BDL	BDL	BDL	BDL	BDL	BDL	100/400
	O ₃	15.9	14.1	24.3	18.2	25.2	18.3	

The state of the s

विश्वान प्रयोगशाली वर्ष के प्रयोगशाली के किस्टेड प्रयोगशाली के उपक्रम) भारत सरकार का उपक्रम) भारत सरकार का उपक्रम) भिनी रता-१० भवन ए-१४ से उपक्रम के स्वान ए-१४ से उपक्रम के से

	Ni	BDL	BDL	BDL	BDL	BDL	BDL	20
	As	BDL	BDL	BDL	BDL	BDL	BDL	06
	Pb	BDL	BDL	BDL	BDL	BDL	BDL	0.5/1.0
	PM ₁₀	87.5	96.2	80.7	94.5	99.5	99.4	60/100
	PM _{2.5}	49.1	54.5	44.3	53.8	55.5	49.4	40/60
	SO ₂	18.7	21.0	15.6	17.2	20.4	18.1	50/80
	NO _x	26.8	29.8	23.0	23.2	29.7	31.7	40/80
	C ₆ H ₆	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	05
Avg.	Benzo (a)pyrene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	01
(March 2021)	co	0.64	0.87	0.70	0.79	0.92	0.92	02/04
	NH ₃	BDL	BDL	BDL	BDL	BDL	BDL	100/400
	O ₃	19.0	20.6	16.1	19.0	20.6	21.9	100/180
	Ni	BDL	BDL	BDL	BDL	BDL	BDL	20
	As	BDL	BDL	BDL	BDL	BDL	BDL	06
	Pb	BDL	BDL.	BDL	BDL	BDL	BDL	0.5/1.0
	PM ₁₀	95.35	91.68	89.94	93.98	95.91	87.87	60/100
	PM _{2.5}	61.36	56.86	53.35	57.23	57.20	52.66	40/60
	SOz	14.80	14.07	15.15	15.19	15.52	16.94	50/80
Average	NOx	28.64	24.19	25.78	24.42	27.79	27.48	40/80
Average	C ₆ H ₆	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	05
(October	Benzo (α)pyrene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	01
2020 -	CO	0.98	0.68	0.65	0.93	0.97	0.72	02/04
March	NH ₃	BDL	BDL	BDL	BDL	BDL	BDL	100/400
2021)	0,	15.17	14.67	21.65	17.84	23.42	20.36	100/180
	Ni	BDL	BDL	BDL	BDL	BDL	BDL	20
	As	BDL	BDL	BDL	BDL	BDL	BDL	06
	Pb	BDL	BDL	BDL	BDL	BDL	BDL	0.5/1.0

NOTE: BDL = Below Detection Limit ($\mu g/m^3$)= PM_{10} , $PM_{2.5}$, SO_2 , NO_x , NH_3 , O_3 , C_6H_6 , Benzo (α)pyrene (mg/m^3)= CO (ng/m^3)= Ni, As, Pb

पर्यावरण प्रयोगशाला प्रयावरण प्रयोगशाला प्रोजेक्ट्स एंड डेवलपमेंट इंडिया तिमिटेड भारत सरकार का उपक्रम) भारत भवन, ए-14, सेक्टर-1 नोएडा-201301 (उ.प.)

ANNEXURE - I

HURL, BARAUNI, GROUND WATER QUALITY DATA (Year: 2020-2021) AVG. (OCTOBER 2020 TO MARCH 2021)

(Results are expressed in mg/l, unless otherwise stated)

		Ar	Requirement			
SI. No.	Parameters	Hand Pump - Admn. Building of HURL (GW1)	Hand Pump - HURL Township (GW2)	Hand Pump - Chakiya Village (GW3)	(Acceptable) Permissible Limits (IS:10500:2012	
PHYS	SICAL			ATTENDED OF THE PARTY OF		
1	pH	7.59	7.39	7.35	6.5-8.5	
2	Temperature (°C)	26.6	26.8	27.1		
3	Colour, HU	<5	<5	<5	5/15	
4	Odour	Agreeable	Agreeable	Agreeable	Agreeable	
5	Taste	Agreeable	Agreeable	Agreeable	Agreeable	
6	Turbidity (NTU)	<5	<5	<5	1/5	
7	Total Suspended Solids	NIL	NIL	NIL	•	
8	Total Dissolved Solids	621.7	518.3	571.7	500/2000	
CHEN	MICAL					
1	P- Alkalinity as CaCO ₃	NIL	NIL	NIL		
2	Total Alkalinity as CaCO ₃	323.2	267.5	340.4	200/600	
3	Chloride as Cl	79.0	69.6	70.1	250/1000	
4	Sulphate as SO ₄	108.2	91.5	89.1	200/400	
5	Nitrate as NO ₃	2.26	1.69	1.88	45/NR	
6	Fluoride as F	<0.4	<0.4	<0.4	1.0/1.5	
7	Total Hardness as CaCO ₃	513.7	406.3	487.5	200/600	
8	Ca. Hardness as CaCO ₃	332.0	243.3	300.8	75/200	
9	Mg. Hardness as CaCO ₃	181.7	163.0	186.7	30/100**	
10	Sodium as Na	13.5	23.2	17.2		
11	Potassium as K	2.6	3.8	3.0		
12	Silica as SiO ₂	20.1	17.0	15.4		
13	Iron as Fe	0.73	0.71	0.66	0.3/NR	
HEAV	Y METALS					
1	Manganese as Mn	BDL	BDL	BDL	0.1/0.3	
2	Total Chromium as Cr	BDL	BDL	BDL	0.05/NR	
3	Lead as Pb	BDL	BDL	BDL	0.01/NR	
4	Zinc as Zn	0.31	0.28	0.34	5.0/15	
5	Cadmium as Cd	BDL	BDL	BDL	0.003/NR	
6	Copper as Cu	BDL	BDL	BDL	0.05/1.5	
7	Nickel as Ni	BDL	BDL	BDL	0.02/NR	
8	Arsenic as As	BDL	BDL	BDL	0.01/0.05	
9	Selenium as Se	BDL	BDL	BDL	0.01/NR	
OTHE						
1	Mineral oil	Absent	Absent	Absent	0.5/NR	
2	Phenolic Compounds as C ₆ H ₅ OH	BDL	BDL	BDL	0.001/0.002	
3	Coliform (MPN/100ml)	62.0	69.2	72.3		

Note: NR - No Relaxation, *Calcium as Ca & ** Magnesium as Mg

Toristy.

पर्यावरण प्रयोगशाला पर्यावरण प्रयोगशाला प्रोजेक्ट्स एंड इंग्लपमेंट इंडिया भारत सरकार का उपक्रम) भिनी रला-1कंपनी भी-डी-आई-एल- भवन, ए-14-सेक्टर-1 नीएडा-201301,(उ.प्र.), एत

ANNEXURE-I

HURL, BARAUNI, SURFACE WATER QUALITY DATA (Year: 2020-2021) AVG. (OCTOBER 2020 TO MARCH 2021)

(Results are expressed in ma/L unless otherwise stated)

	(Results are ex	Ar	nalysis Resi	ults	Requirement	
SI. No.	Parameters	Ganga River (SW1)	Bihat Village (Pond) (SW2)	Baya Nala (SW3)	(Acceptable) / Permissible Limits (IS:10500:2012	
-	SICAL		Name to the state of the state of			
1	Temperature (°C)	25.7	25.3	25.4	•	
2	Colour, HU	13.7	13.4	15.2	5/15	
3	Turbidity (NTU)	6.9	7.7	6.7	1/5	
4	pH	7.07	7.35	7.59	6.5-8.5	
5	Total Dissolved Solids	244.5	370.8	307.8	500/2000	
6	Total Suspended Solids	70.8	51.3	62.5		
-	MICAL					
1	Total Alkalinity as CaCO ₃	159.3	197.3	199.7	200/600	
2	Chloride as Cl	28.1	75.1	40.5	250/1000	
3	Sulphate as SO ₄	20.7	36.8	28.7	200/400	
4	Nitrate as NO ₃	3.1	4.5	4.1	45/NR	
5	Fluoride as F	<0.4	<0.4	<0.4	1.0/1.5	
6	Total Hardness as CaCO ₃	179.0	302.2	243.3	200/600	
7	Calcium Hardness as CaCO ₃	111.2	178.0	146.0	75/200*	
8	Magnesium Hardness as CaCO ₃	67.8	124.2	97.3	30/100**	
9	Dissolve Oxygen	6.6	6.1	6.2	•	
10	COD	12.8	17.1	12.9		
11	BOD (3 days at 27°C)	2.7	4.1	3.2	•	
12	Sodium as Na	23.8	31.6	25.3	1.	
13	Potassium as K	3.9	5.2	4.7		
HEA\	YY METALS					
1	Iron as Fe	0.19	0.24	0.21	0.3/NR	
2	Manganese as Mn	BDL	BDL	BDL	0.1/0.3	
3	Total Chromium as Cr	BDL	BDL	BDL	0.05/NR	
4	Lead as Pb	BDL	BDL	BDL	0.01/NR	
5	Zinc as Zn	0.22	0.35	0.31	5.0/15	
6	Cadmium as Cd	BDL	BDL	BDL	0.003/NR	
7	Copper as Cu	BDL	BDL	BDL	0.05/1.5	
8	Nickel as Ni	BDL	BDL	BDL	0.02/NR	
9	Arsenic as As	BDL	BDL	BDL	0.01/0.05	
10	Selenium as Se	BDL	BDL	BDL	0.01/NR	
OTHE	RS	•				
1	Mineral oil	Absent	Absent	Absent	0.5/NR	
2	Phenolic Compounds as C ₆ H ₅ OH	BDL	BDL	BDL	0.001/0.002	
3	Coliform Organisms (MPN/100ml)	1226.7	723.3	925.0	-	

Note: NR - No Relaxation, *Calcium as Ca & ** Magnesium as Mg

Aldun पर्यावरण प्रयोगशाला प्रोजेक्ट्स एंड डेवलपमेंट इंडिया लिमिटेड (भारत सरकार का उपक्रम) मिनी रत्ना-१कंपनी पी. डी. आई. एल. भवन. ए-14 सेक्टर-1 नोएडा-201301 (उ.म.), रित

HURL, BARAUNI, NOISE QUALITY DATA (Year: 2020-2021)

Period	Parameters	Admn. Building HURL (SA1)	Simariya Village (SA2)	Near HURL Township (SA3)	Mahna Village (SA4)	Chakiya Village (SA5)	Bihat Village (SA6)	Prescribe Limits in dB(A) as per
October 2020	24-hrs Avg L _{eq.} Value dB(A)	51.9	50.2	47.6	45.8	46.1	48.8	NAAQS -
	Day time L _{eq.} Value dB(A)	53.1	51.8	49.2	47.1	47.4	50.4	75/55
	Night time L _{eq.} Value dB(A)	47.5	40.0	39.7	40.3	40.6	39.4	70/45
November	24-hrs Avg L _{eq} Value dB(A)	52.1	49.6	48.1	46.1	45.7	49.2	11 +0
2020	Day time Leq Value dB(A)	53.4	51.2	49.7	47.6	47.1	50.8	75/55
	Night time Leq Value dB(A)	46.3	38.8	38.5	39.1	39.4	38.2	70/45
	24-hrs Avg L _{eq.} Value dB(A)	55.0	53.4	51.6	50.8	51.0	51.3	
December 2020	Day time Leq. Value dB(A)	55.6	54.6	53.0	52.2	52.3	52.6	75/55
4-	Night time L _{eq.} Value dB(A)	53.2	49.1	44.8	44.6	45.6	45.4	70/45
January	24-hrs Avg L _{eq} Value dB(A)	55.0	53.7	51.8	51.2	51.1	51.1	
2021	Day time Leq Value dB(A)	55.7	54.9	53.2	52.7	52.4	52.5	75/55
	Night time Leq Value dB(A)	53.0	49.7	45.2	44.6	45.4	45.3	70/45
And the second	24-hrs Avg L _{eq.} Value dB(A)	54.9	53.6	53.2	51.2	51.4	51.1	10/40
February 2021	Day time Leq. Value dB(A)	55.9	54.8	54.7	52.6	52.7	52.4	75/55
America, S	Night time L _{eq.} Value dB(A)	52.0	49.5	46.2	45.1	46.0	45.9	70/45
March	24-hrs Avg L _{eq} Value dB(A)	59.8	51.2	51.0	50.3	50.5	52.1	
2021	Day time Leq Value dB(A)	61.2	52.3	52.2	51.5	51.7	53.5	
	Night time Leq Value dB(A)	53.3	47.2	47.0	46.0	46.0	46.0	
Avg.	24-hrs L _{eq.} Value dB(A) Day time	54.8	52.0	50.6	49.2	49.3	50.6	
October 2020 - March	L _{eq.} Value dB(A) Night	55.8	53.3	52.0	50.6	50.6	52.0	75/55
March 2021)	time L _{eq.} Value dB(A)	50.9	45.7	43.6	43.3	43.8	43.4	70/45

Tall of the second

पर्यावरण प्रयोगशाला
प्राचेनस्य इंडिया लिमिटेड
प्रोजेक्ट्स एंड डेवलपमेंट इंडिया लिमिटेड
(भारत सरकार का उपक्रम)
मिनी रत्नाककंम्डी
पी.डी.आई.एल. भवन, ए-14,सेक्टर-1
नोएडा-201301,(उ.प्र.), रित

House No.- 322/2, Ward No.-15, Near RPS More, Next to Capital Suzuki, Distt.-Patna (Bihar) - 801503 Office No.: 7667299840, Ph.: 9798697785 / 9334254100 E-mail: gtripatna@gtrl.org.in, Visit us: www.gtrl.org.in

TESTING CERTIFICATE

Issued to:

Technip India Limited HURL Project, Barauni Bihar India - 851135

Date of Report:

01/10/2020

Report No:

250920/Civ/06797/i

Date of Field Testing:

25/09/2020

Period of Testing:

25/09/2020 To 30/09/2020

GTRL/250920/06732

Job S. No .:

Job Code No.:

Civ/250920/06741/i

Name of Customer:

Nil

Customer Ref No. to GTRL:

Nil

Customer-Client Agreement No.:

Stack Emission of DG Set; Make - RAPower, Id. No. - TFMC/DG/01

Sample Description:

Temperature - 32°c , RH - 34% , Weather - Clear

Environmental Condition During Sampling:

01:30 a.m.

M/s Technip India Ltd.

Sampling Time: Name of Work:

Nil na diamina

Result

S. No.	Particulai	
1.	Type of Fuel Used	
	Sampling Duration, min.	

High Speed Diesel (HSD) 40 KVA

out. Professional
Stack Temperature, °C

108°c 62.5 KVA

Capacity of DG 5. Height of Stack from Ground Level

06 meter

6. Diameter of Stack 7.

05 Inch

Average Flow Rate 8.

23.2 LPM

Stack Gas Velocity, m/s as Per IS :11255 (Part - 3) 9.

7.2 m/sec

Requirement

Concentration of Pollutants in Fuel Gas

1997上界在原线的大小线点

S. No.	Tests	Test Method	The Environmental (Protection) Rules, 1996 General Emission Standard – Part -D	Result
1	PM, mg/Nm³	IS 11255 (Part 1):1985 (RA 2019)	150.00	62.40
		IS 11255 (Part 2):1985	Not Specified	53.2
2	Sulphur Dioxide (SO2), mg/Nm3	(RA 2014)		
3	Oxides of Nitrogen(Nox), mg/Nm3	IS 11255 (Part 7):1985 (RA 2012)	Not Specified	61.7
		***End of Report**		

House No. 322/2, Ward No. 15, Near RPS More, Next to Capital Suzuki, Distt. Patna (Bihag - 801503 Office No.: 7867299840, Ph.: 9798897785 / 9334254100 E-mail : gtripatna@gtrt.org.in, Visit us ; www.gtrt.org.in

TESTING CERTIFICATE

Issued to: Alexandrationare Technip India Limited HURL Project, Barauni

Bihar India - 851135

Date of Report:

Report No:

250920/CIv/06797/ii

Date of Field Testing:

Period of Testing:

Job S. No.:

Job Code No.:

01/10/2020

25/09/2020 The Asian Contract 25/09/2020 **To** 30/09/2020

GTRL/250920/06732

Civ/250920/06741/il

Name of Customer:

M/s B P Enterprises

to Line You at

Customer Ref No. to GTRL:

NII

Customer-Client Agreement No.:

NII

Sample Description:

Noise limit for DG Set

Environmental Condition During Sampling:

Temperature - 32°c , RH - 34% , Weather - Clear

Sampling Time:

Nil

01:30 a.m.

Name of Work:

S. No. Tests

1

Requirement

(Protection) second

Environment Amendment Rules vide GSR 371(E), dated 17th May 2002 at serial no.94 and its

amendments vide GSR No 520(E) dated 1st July 2003; GSR 448(E), dated 12th July 2004;

GSR 315(E) dated 16th May 2005; GSR 464(E)

dated 7th August 2006; GSR 566(E) dated 29th August 2007 and GSR 752(E) dated 24th October 2008; G.S.R. 215 (E), dated 15th

March, 2011 under the Environment

(Protection) Act, 1986)

Noise limit for

Generator Set

(dB)

Test Method

IS 9989:1981: (RA 2014)

75 dB(A) at 1 meter from the enclosure

surface, Max.

63.8

Result

Yes

Conformity

End of Report

contain w

AUTHORIZED SIGNATORY

House No.- 322/2, Ward No.-15, Near RPS More, Next to Capital Suzuki, Distt.-Patna (Bihar) - 801503
Office No.: 7667299840, Ph.: 9798697785 / 9334254100
E-mail: gtripatna@gtri.org.in, Visit us: www.gtrl.org.in

TESTING CERTIFICATE

Issued to:

Kamlesh Kumar Singh At+ Po Ulao, Begusarai Bihar India – 851134 Date of Report:

01/10/2020

Report No:

250920/Clv/06799/I

Date of Field Testing:

25/09/2020

Period of Testing:

25/09/2020 To 30/09/2020

Job S. No.:

GTRL/250920/06734

Job Code No.:

Clv/250920/06743/I

Name of Customer:

M/s Kamlesh Kumar Singh

Customer Ref No. to GTRL:

Nil

Customer-Client Agreement No. :

NII

Sample Description:

Stack Emission of DG Set; Make - Sudhir, Id. No. - KKS/DG/01

Environmental Condition During Sampling:

Temperature - 32°c, RH - 35%, Weather - Clear

Sampling Time: Name of Work: 03:30 a.m. Nil

S. No.

Particular

Result

1. Type of Fuel Used High Speed Diesel (HSD)
3. Sampling Duration, min. 32
4. Stack Temperature, °C 120°c
5. Capacity of DG 250 KVA

6.

Capacity of DG 250 KVA
Height of Stack from Ground Level 08 meter

7.

of Stack from Ground Level 08 meter
Diameter of Stack 06 Inch

8.

Average Flow Rate 20.5 LPM

9.

Stack Gas Velocity, m/s as Per IS:11255 (Part - 3)

7.8 m/sec

Concentration of Pollutants in Fuel Gas

5. No.	Tests	Test Method	Requirement The Environmental (Protection) Rules, 1996 General Emission Standard – Part -D	Result
. 1	PM, mg/Nm ^a	IS 11255 (Part 1):1985 (RA 2019)	150.00	62.58
2	Sulphur Dioxide (SO2), mg/Nm3	IS 11255 (Part 2):1985 (RA 2014)	Not Specified	53.2
3	Oxides of Nitrogen(Nox), mg/Nm3	IS 11255 (Part 7):1985 (RA 2012)	Not Specified	56.8
		***End of Report**		

Larrage

CHESCHE SECTION OF THE SECTION

JABLACCREDITED / ISO 9801 32015 CERTIFIED LABORATORY

House No.- 322/2, Ward No.-15, Neer RPS More, Next to Capital Suzuki, Distr.-Patna (Bihar) - 805503 Onfice No.: 7687299840, Ph.: 9798597785 / 9334254100 E-mail: gurlpatna@gurl.org.in, Visit tis: www.gtrl.org.in

TESTING CERTIFICATE

Issued to:

Kamlesh Kumar Singh At+ Po Ulao, Begusarai Bihar India - 851134 **Date of Report:**

Report No:

Date of Field Testing:

Period of Testing:

Job S. No .: Job Code No.: 01/10/2020

250920/Civ/06799/il

25/09/2020

25/09/2020 To 30/09/2020

GTRL/250920/06734

Civ/250920/06743/ii

Name of Customer:

M/s Kamlesh Kumar Singh

Customer Ref No. to GTRL:

Nil

TREE PROPERTY OF THE PERSONNEL PROPERTY OF T

Customer-Client Agreement No. :

Nil

Sample Description:

Noise limit for DG Set

Environmental Condition During Sampling:

Temperature - 32°c, RH - 35%, Weather - Clear

Sampling Time:

03:30 a.m.

Name of Work:

S. No. Tests

1

Nil

Requirement

(Protection) second Environment Amendment Rules vide GSR 371(E), dated 17th May 2002 at serial no.94 and its amendments vide GSR No 520(E) dated 1st July 2003; GSR 448(E), dated 12th July 2004; GSR 315(E) dated 16th May 2005; GSR 464(E)

dated 7th August 2006; GSR 566(E) dated 29th August 2007 and GSR 752(E) dated 24th October 2008; G.S.R. 215 (E), dated 15th March, 2011 under the Environment

(Protection) Act, 1986)

1 0 688 1 F

Noise limit for

(dB)

Generator Set

6.30 08.77

IS 9989:1981: (RA 2014)

Note that the property of the

Test Method

75 dB(A) at 1 meter from the enclosure

surface, Max.

63.9

Result

Yes

Conformity

End of Report

House No.- 322/2, Ward No.-15, Near RPS More, Next to Capital Suzuki, Distt.-Patna (Bihar) - 801503 Office No.: 7667299840, Ph.: 9798697785 / 9334254100 E-mail: gtrlpatna@gtrl.org.in, Visit us: www.gtrl.org.in

TESTING CERTIFICATE

issued to:

Nasim Ahsan Construction Pvt. Ltd. At.: Thakurichak, P.O. - Gahara Distt:- Begusarai (Bihar), 851126

Date of Report:

Report No:

01/10/2020

250920/Civ/06798/i

Date of Field Testing:

25/09/2020

Period of Testing:

25/09/2020 To 30/09/2020

Job S. No .:

GTRL/250920/06733

Job Code No.:

Civ/250920/06742/i

Name of Customer:

M/s Nasim Ahsan Construction Pvt. Ltd.

Customer Ref No. to GTRL:

Nil

Customer-Client Agreement No.:

NII

Sample Description:

Stack Emission of DG Set; Make - Kirloskar, Id. No. - NACPL/DG/

Environmental Condition During Sampling:

Temperature - 34°c , RH - 38% , Weather - Clear

Sampling Time:

Nil

Name of Work: S. No.

Particular

02:30 a.m.

Result

High Speed Diesel (HSD) Type of Fuel Used 40

1. 3. 4.

Sampling Duration, mln. Stack Temperature, °C

120°c

5.

Capacity of DG

165 KVA

6.

Height of Stack from Ground Level

07 meter 06 Inch

7.

Diameter of Stack Average Flow Rate

23.5 LPM

8. 9.

Stack Gas Velocity, m/s as Per IS: 11255 (Part - 3)

7.8 m/sec

Concentration of Pollutants in Fuel Gas

s. No.	Tests	Test Method	The Environmental (Protection) Rules, 1996 General Emission Standard – Part -D	6 Result
1	PM, mg/Nm ³	IS 11255 (Part 1):1985 (RA 2019)	150.00	62.38
2	Sulphur Dioxide (SO2), mg/Nm3	IS 11255 (Part 2):1985 (RA 2014)	Not Specified	51.2
3	Oxides of Nitrogen(Nox), mg/Nm3	IS 11255 (Part 7):1985 (RA 2012)	Not Specified	58.7
		***End of Report*	•••	

AUTHORIZED

WAR A VEGRESOR BY PROPERTY AND FOR THE PARTY OF A PROPERTY OF A

House No.-322/2, Ward No.-15, Near RP5 More, Next to Capital Sezuki, Distt.-Patna (Bihar) - 801503
Office No.: 7667289840, Ph.: 97996877857 9334254180
E-meil : gtripetna@ytrl.org.in, Visit us : www.gtrl.org.in

TESTING CERTIFICATE

Issued to:

Nasim Ahsan Construction Pvt. Ltd. At.: Thakurichak, P.O. - Gahara Distt:- Begusarai (Bihar), 851126

CARLEST BUREAU

Date of Report:

Report No:

01/10/2020

250920/Clv/06798/II

Date of Field Testing:

25/09/2020

Period of Testing:

25/09/2020 To 30/09/2020

Job S. No.:

GTRL/250920/06733

Job Code No.:

Civ/250920/06742/ii

Name of Customer:

M/s Nasim Ahsan Construction Pvt. Ltd.

Environment

Customer Ref No. to GTRL:

Nil

Customer-Client Agreement No.:

Nil

Sample Description:

Noise limit for DG Set

Environmental Condition During Sampling:

Temperature - 34°c, RH - 38%, Weather - Clear

Sampling Time:

02:30 a.m.

Name of Work:

S. No. Tests

NII

Requirement

(Protection) second

Amendment Rules vide GSR 371(E), dated 17th May 2002 at serial no.94 and its

amendments vide GSR No 520(E) dated 1st

July 2003; GSR 448(E), dated 12th July 2004;

GSR 315(E) dated 16th May 2005; GSR 464(E)

dated 7th August 2006; GSR 566(E) dated 29th August 2007 and GSR 752(E) dated 24th

October 2008; G.S.R. 215 (E), dated 15th

March, 2011 under the Environment

(Protection) Act, 1986)

Noise limit for

Generator Set

(dB)

IS 9989:1981: (RA 2014)

Test Method

75 dB(A) at 1 meter from the enclosure

surface, Max.

63.5

Result

Yes

Conformity

रिकाल रहेर विकास करें हैं जिस्सी है है है है से इस बहर है । बना कर कि उन्हों है

End of Report

House No.- 322/2, Ward No.-15, Near RPS More, Next to Capital Suzuki, Distt.-Patna (Bihar) - 801503 Office No.: 7667299840, Ph.: 9798697785 / 9334254100 E-mail: gtripatna@gtrl.org.in, Visit us: www.gtrl.org.in

TESTING CERTIFICATE

Issued to:

& T Hydrocarbon Engineering Limited

HURL-Project

Barauni, Bihar

Date of Report:

Report No:

Date of Field Testing:

Period of Testing: Job S. No .:

Job Code No.:

29/10/2020

230920/Civ/06794/iii

25/09/2020

25/09/2020 To 30/09/2020

GTRL/160920/06729

Civ/230920/06738/iii

Name of Customer:

M/s L & T Hydrocarbon Engineering

Customer Ref No. to GTRL:

NI Nil

Customer-Client Agreement No.: Sample Description:

Noise limit for DG Set; Location - P & M workshop near by DG Set

Environmental Condition During Sampling:

Temperature - 26°c, RH - 53%, Weather - Clear 12:30 a.m.

Sampling Time: Name of Work:

S. No. Tests

1

Nil

Requirement

Environment (Protection) Amendment Rules vide GSR 371(E), dated 17th May 2002 at serial no.94 and its

amendments vide GSR No 520(E) dated 1st July 2003; GSR 448(E), dated 12th July 2004;

GSR 315(E) dated 16th May 2005; GSR 464(E) dated 7th August 2006; GSR 566(E) dated 29th August 2007 and GSR 752(E) dated 24th October 2008; G.S.R. 215 (E), dated 15th

March, 2011 under the Environment

(Protection) Act, 1986)

Noise limit for

Generator Set (dB)

IS 9989:1981: (RA 2014)

Test Method

75 dB(A) at 1 meter from the enclosure

surface, Max.

63.0

Result

Yes

Conformity

End of Report

AUTHORIZED SIGNATORY

NUJ KUMAR (TM)

House No. 322/2, Ward No. 15, Near RPS More, Next to Capital Suzuki, Diett. Petnä (Bihar) - 801503 Office No.: 7667299846, Ph.: 9798697785 / 9334254100 Sandi : gtripatna@gtri.org.in, Visit us : www.gtri.org.in

TESTING CERTIFICATE

Issued to: 1/829 2/4/2/0/8025

B P Enterprises

Durgachak, Haldiaa

Purba Medinipur, West Bangal -19

Date of Report:

Report No:

Date of Field Testing:

Period of Testing:

Job S. No.:

Job Code No.:

01/10/2020

250920/Clv/06796/il

25/09/2020

25/09/2020 To 30/09/2020

TO J being!

the bearing of

GTRL/250920/06731

Civ/250920/06740/II

Name of Customer:

M/s B P Enterprises

1 4 1 Par

Customer Ref No. to GTRL:

Nil Nil

Customer-Client Agreement No.: Sample Description:

Noise limit for DG Set

Environmental Condition During Sampling:

Temperature - 30°c , RH - 48% , Weather - Clear

Environment

12:30 a.m. Sampling Time:

Name of Work:

S. No. Tests

1

Nil

Requirement

(Protection)

second

Amendment Rules vide GSR 371(E), dated

17th May 2002 at serial no.94 and its

amendments vide GSR No 520(E) dated 1st

July 2003; GSR 448(E), dated 12th July 2004;

GSR 315(E) dated 16th May 2005; GSR 464(E)

dated 7th August 2006; GSR 566(E) dated

29th August 2007 and GSR 752(E) dated 24th

October 2008; G.S.R. 215 (E), dated 15th

March, 2011 under the Environment

(Protection) Act, 1986)

281 - 10 - 10 -

Noise limit for

75 dB(A) at 1 meter from the enclosure

surface, Max.

64.3

Color parties, and

Result

Yes

Conformity

Generator Set

(dB)

IS 9989:1981: (RA 2014)

Test Method

End of Report

1

AUTHORIZED SIGNATOR

New testing and the life and send and the controlly

House No.- 322/2, Ward No.-15, Near RPS More, Next to Capital Suzuki, Distt.-Patna (Bihar) - 601503 Office No.: 7667299840, Ph.: 9798697785 / 9334254100 E-mall: gtrlpatna@gtrl.org.in, Visit us: www.gtrl.org.in

TESTING CERTIFICATE

issued to: **B** P Enterprises Durgachak, Haldiaa

Purba Medinipur, West Bangal -19

Date of Report:

01/10/2020

Report No:

250920/Civ/06796/i

Date of Field Testing:

25/09/2020

Period of Testing:

25/09/2020 To 30/09/2020

Job S. No.:

GTRL/250920/06731

Result

Job Code No.:

Civ/250920/06740/i

Name of Customer:

M/s B P Enterprises

Customer Ref No. to GTRL:

Nil

Customer-Client Agreement No.:

Nil

Sample Description:

Stack Emission of DG Set; Make - Genset India, Id. No. - BPE/DG/01

Environmental Condition During Sampling:

Temperature - 30°c , RH - 48% , Weather - Clear

Sampling Time:

12:30 a.m.

Name of Work:

Nil

S. No.	Particular	Result
1.	Type of Fuel Used	High Speed Diesel (HSD)
3.	Sampling Duration, min.	30
4.	Stack Temperature, °C	118 ⁰ c
5.	Capacity of DG	62.5 KVA
6.	Height of Stack from Ground Level	05 meter
7.	Diameter of Stack	04 Inch
8.	Average Flow Rate	25.5 LPM
o. 9.	Stack Gas Velocity, m/s as Per IS :11255 (Part - 3)	6.8 m/sec

Concentration of Pollutants in Fuel Gas

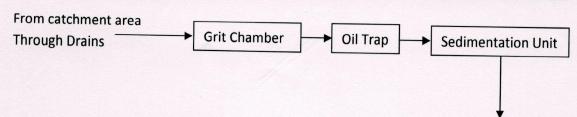
\$. No.	Tests	Test Method	Requirement The Environmental (Protection) Rules, 1996 General Emission Standard – Part -D	Result
1	PM, mg/Nm ³	IS 11255 (Part 1):1985 (RA 2019)	150.00	55.82
2	Sulphur Dioxide (SO2), mg/Nm3	IS 11255 (Part 2):1985 (RA 2014)	Not Specified	58.2
3	Oxides of Nitrogen(Nox), mg/Nm3	IS 11255 (Part 7):1985 (RA 2012)	* Not Specified	62.4
		***End of Report**		

Mark Acceptance accept to the facility of the complete and the complete an

RAINWATER HARVESTING

The rain water collected from the roof of the permanent buildings shall be harvested for ground water recharge as a compensation to meet the requirement due to loss of permeable area promoting ground water recharge, maintenance of existing hydro-dynamic pattern of the area and to conserve the salinity of ground water in the area. The excess rainwater shall be sent to the trap through storm water drain and attempts shall be made not to mix any process waste with the storm water. The trap shall have two compartments, one consisting of sized boulders and the other, sized hard coke. The excess water from sized hard coke shall be collected in another tank before discharge in to natural drainage system. The drainage system of project area shall be aligned as per the existing natural drainage pattern of the area.

Rain water harvesting and recharging system shall be installed as per the relevant the central ground water board guidelines applicable for the area. The rain water harvesting/aquifer recharging system have been proposed as water conservation measure. The systems shall be installed at such location of the project area close to the Administrative building so as to facilitate collection of most of the rain water from the roofs of the building in the project area. Similarly, same system of rain water harvesting shall be implemented in the township.


The bores shall be provided within 3 m deep enclosures, which will comprise layers of boulders, gravel and coarse sand so as to separate suspended matter from the rainwater. Three nos. of ground water recharging systems have been proposed to be developed in the township area and three nos. in the factory area. Rainwater harvesting system will consist of the following units:

- 1. Rainwater Collection System
- 2. Rainwater Filtration System
- 3. Rainwater Recharging Pond including an active well of depth 20m and dia 100-150mm.

The system will be cleaned during dry season and will be made ready to collect water for harvesting from its command area during monsoon. Provision shall also be made in the rainwater harvesting system for Chlorination/disinfection especially during the first phase of monsoon. The system shall be designed as per the guidelines for rainwater harvesting prepared by Central Ground Water Board (Ministry of Water Resources).

The scheme of rain water harvesting and aquifer recharging is presented below:

Block Diagram for Proposed Rain Water Harvesting / Aquifer Recharging System

1 vinds

Groundwater Aquifer

The rainwater harvesting system for the fertilizer plant will follow the guidelines laid out by different Departments/Ministries as far as possible.

- a) Guidelines on Artificial Recharge of Water, Central Water Ground Board, Ministry of Water Resources, Gol (2000);
- b) Manual on Artificial Recharge of Ground Water, Central Water Ground Board, Ministry of Water Resources, Gol (2007);
- Rain Water Harvesting and Conservation: Manual, Consultancy Services Organization, CPWD, Gol (2002);

The sizing of the rain water collection drain and sub-units including the harvesting pond shall be calculated depending upon the maximum rain intensity within 50 years and roof area of the building after finalization of the building design.

GREEN BELT DEVELOPMENT & PLANTATION OF TREES

The project proponent shall develop greenbelt in an area of 33% i.e., nearly 116 acres out of 350 acres plant area of the project. The greenbelt of 30m width around periphery shall be provided (Plate A)

5000 trees per year in 5 year shall be planted in nearby village with the consultation of the villagers. Survival rate of plants shall be reported to RO, MoEF&CC in 6 monthly compliance reports.

Purpose

Trees and plants are an essential component of healthy environment. In addition to maintaining the oxygen-carbon dioxide balance in the atmosphere through photosynthesis, trees and plants control air and noise pollution, control soil erosion, provide food and shelter to domestic and wild animals including birds and insects, and improve the aesthetic value of the environment. The utility of the green belt predominantly lies in its capacity to attenuate the fugitive emission and spillage. Thus, the objectives of the proposed green belt program are as pillows:

- a) To control air pollution due to fugitive emissions and spillage.
- b) To attenuate noise generated by various machines.
- c) To attenuate the effect of accidental release of toxic gases.
- d) To reduce the effect to fire and explosion.
- e) To improve the general appearance and aesthetics of the area.
- f) To provide food and habitat for wildlife.
- g) To control soil erosion.
- h) To obscure the proposed facilities from general view.

Areas to be afforested

Barauni Fertilizer plant shall be established in existing 350 acres of land in the battery limit of HFCL. Green-belt development program shall be undertaken in 33% of the plant area including 30 m wide green belt around the battery limit of the plant. There exists a thick green belt around the existing abandoned fertilizer plant. The existing township is well planned with a proper forestation. While preparing the layout plan for locating the different facilities, extreme care has been exercised to preserve the existing plantation to the extent possible. Trees, lawns and gardens shall be developed within the premises to cover all the vacant areas. Extreme care shall be taken to utilize all available areas for forestation.

Scheme and Species for Green Belt

The general approach for selection of species for green belt development is their potential for attenuation of fugitive emissions and noise, diversity of vegetation, introduction of species attracting birds and

Jaren Man

animals, and to create a natural habitat. It is proposed to develop trees of different heights so as to provide cover from ground level up to the canopy of tall tree species. Further, trees with big foliage and those known to prosper well in the area will be developed. Preference will be given to fruit bearing trees so as to provide food and shelter to birds and insects.

The plan for development of green belt is as given below:

- a) The distance between two plants should not be less than 3.0 m so that a 30 m width green belt will have ten rows of plantations. Thus a 30 m width green belt will have a plant boundary of 1.0 km will have 3330 plants.
- b) A pit of 45 cm x 45 cm x45 cm must be dug for plantation of saplings which are at least 6 months old.
- c) Samplings must be planted at the onset of monsoon.

Different species in the green belt suggested to have dense stratified 3 to 5 layer canopy so as to form a visible barrier and wind breaker

- a) On the outer ring of the green belt facing fugitive emissions from the open surface and roads close plantation of 2 to 3 rows of evergreen *Alstoniascholaris* intermixed with *FicusCunea* and Babul.
- b) Behind the outer layer, fast growing evergreen plants having good fugitive emission removing capacity like evergreen *MahuaIndica* and *Derris Indica*, Sagwan, Gambhar and Putranjiya.
- c) Middle layer may be planted with Silver Oak which is tall, hardy and evergreen.
- d) In the next layer some typical hard and fast growing plants like *Leucaena*, *Acacia auri-culiformis*, *Cassia fistula*, *C. Siamea*, *Inga ducis*may also be considered.
- e) In the inner perhiberyBouganvellia may be planted as it has high capacity for absorbing toxic gases.
- f) Some plants having good timber value like *Dalbergiasissoo*, *Albizzialebbek*, *Azadiractaindica*, *Tectonsgrandis*along with fruit trees like Ber, Guava, Jamun, Jack fruit and Bel may also be planted to attract birds.
- g) For fencing purpose plants from *Asclepiadaceae* and *Apocynaceae* families like *AlstoniaCalotropis* which are resistant to grazing may be considered.
- h) The entire green belt may be interspersed with climbers.

Efforts would be made by M/s HURL in collaboration with State Forest Department to explore mutual areas of interest in the area of identifying trees/plants to maintain/enhance the current biodiversity index.

Laverdy

Government of India Ministry of Environment, Forests and Climate Change (MoEF&CC) Regional Office – Ranchi

MONITORING REPORT PART I DATA SHEET

File No

1		Project Type	Industrial (Ammonia & Urea production)
2		Name of the project	Ammonia-Urea Fertilizer Project
			Hindustan Urvarak&Rasayan Limited, Barauni
3		Clearance letters/Om No. and dated	J-11011/371/2016-IA II(I)
4		Locations	Barauni
	а	Taluk(S)	Barauni
		District	Begusarai
	b	State(S)	Bihar
	С	Latitudes/Longitudes	Location Longitude Latitude Elevation (m)
			NE Boundary, 86°2'11.00"E, 25°24'58.76"N, 48
			Northern Boundary, 86°1'48.52"E, 25°25'0.64"N, 47
			NW Boundary, 86°1'32.62"E, 25°25'1.39"N, 47
			Centre of HFC Plant, 86°1'43.32"E, 25°24'46.89"N, 48
			Eastern Boundary, 86°2'7.44"E, 25°24'42.87"N, 47
			Western Boundary, 86°1'18.59"E, 25°24'49.95"N, 48
			Southern Boundary, 86°1'37.34"E, 25°24'34.42"N,
			47
			South-West Boundary, 86°1'13.77"E, 25°24'37.87"N,
			48
			South-East Boundary, 86°2'5.80"E, 25°24'30.65"N,
			46
			Source: GPS
5		Address for correspondence	
	a	Address of concerned Project Chief	Goutam Deb
		Engineer (with Pin Code &	GM (Project)
		Telephone/Telex/fax nos)	Hindustan Urvarak & Rasayan Limited (HURL)
			Barauni Urvarak Nagar,
			Begusarai-851115
	h	Address of Early	BIHAR
	b	Address of Executive Project	Dharminder Bagga
		Engineer (with Pin Code/fax	VP (Maintenance)
		numbers)	Hindustan Urvarak & Rasayan Limited (HURL)
			Barauni Urvarak Nagar,
			Begusarai-851115
			BIHAR

6		Salient Features	
	a	Salient features of the project	The Ammonia and Urea plants shall be one of the latest mega capacity plants (2200 MTPD for Ammonia and 3850 MTPD for Urea). The technology suppliers shall consider the latest technological features with an objective to have lowest energy consumption & high reliability of plant having state of the art technology with latest technological features. Ammonia and Urea plants planned shutdown shall be once in two years. One blast proof central control room for location of control & monitoring of operation of all Ammonia/Urea/Offsite & utility plants shall be provided by LSTK Contractor. The ETP facility shall treat all effluents, continuous, intermittent or emergency discharges from ammonia/urea plants. All liquid treated effluent from various sections of the plants shall be collected in final effluent pond made of RCC. The treated effluent shall be pre-treated with chemicals to make it Suitable for feeding to RO plant. The RO plant shall be two stage RO systems. The treated water from RO shall be recycled back to filtered water tank in WTP. The final reject waste water from RO units shall be further treated in thermal evaporation unit using low pressure steam to achieve zero liquid discharge from ETP plant. All Liquid & gaseous effluents generated from various plans & facilities shall be treated before final discharge to meet the requirements of Central/State pollution control board.
b	0	Of the environmental management plans.	An Environmental Management Plan (EMP) has been prepared keeping in view all possible strategies oriented towards the impact minimization. The EMP for the proposed project is divided into three phases i.e. Planning, Construction and Operational phase. During the planning stage, Energy efficient machines with 5star rating shall be utilised along with LED street lights and use of solar energy. Ultra low NOx burners shall be integrated into the system to reduce NOx emissions. All piping and instrumentation diagrams and plant layout shall be reviewed as a part of HAZOP/HAZAN studies to assess the risks involved. Noise suppression measures such as enclosures and buffers will be used to limit noise levels in areas frequented by personnel to below 85 dB(A).

7 8	а	Breakup of the project area Project area Breakup of project affected population with enumeration of those losing house/dwelling units	The overall impact of the pollution on the environment during construction phase is localised nature and is for a short period at all sites. In order to develop effective mitigation plan, all the construction activities shall be undertaked controlled and managed by LST/Non-LSTK contracted under the guidance of PMC. It is mandatory for these contractors to develop site/project specific HSP olicy, HSE Plan, HSE management system. The environmental management plan during the operational phase of the plant shall be directed towards the following: Ensuring the operation of various process units as per specified operation guidelines/operating manuals. Strict adherence to maintenance schedule for various machinery/equipment. Good Housekeeping practices. Post project environmental monitoring. 349.79 acres No Project Affected Persons are involved as there is no displacement of population. The project is coming up in old plant complex of HFC, Barauni.
		only, agriculture land only, both	, and a second of the second o
		dwelling units and agriculture land and landless labours/artisans	
	a	SC, ST/Adivasis	NA
	b	Others	NA
9		Financial Details	
	а	Project cost as originally planned	Rs. 6317 crore (Feb' 2017)
		and subsequent revised estimates and the years of price reference	Revised Estimate : Rs. 6977.01 crore (Nov 2018) Revised Estimate: Rs. 8388 crore (March 2021)
			(Watch 2021)
	b	Allocation made for environmental management plans with item wise and year wise breakup	It is included in the project cost.
	С	Benefit cost ratio/internal rate of	Debt Service Coverage Ratio* 1.68
		return and the years of assessment	Internal rate of Return* 10.97
			*As per Project Feasibility Report
	d	Whether © includes the cost of environmental management as shown in (b) above	Yes
	е	Total expenditure on the Project so far	Rs. 4131.22 crore

	f	Actual expenditure incurred on the environmental management plans so far	Rs. 1.716 Crore (for environmental monitoring job at HURL Barauni)
10		Forest land requirement	No Forest Land is involved
	а	The status of approval for a diversion of forest land for non-forestry use	NA
	b	The status of compensatory afforestation, if any	NA
	С	The status of clear felling	NA
	d	Comments on the viability and sustainability of compensatory afforestation in the light of actual field experience so far	NA
11		The status of clear felling in no- forest area (such as submergence area of reservoir, approach road) if any with quantitative information	NA
12		Status of Construction	Construction job in progress. Overall progress of the project is around 86.7 % up to 25 th March 2021
	a	Date of commencement	1 st April 2018
	b	Date of completion (actual and / or planned)	45 months from 1 st April 2018
13		Reasons for the delay if the project is yet to start	NA
14		Date of site visit	
	а	The dates on which the project was monitored by the Regional Office on previous occasions, if any	Project site was visited by Regional office on 09.01.2019.
	b	Date of site visit for this monitoring report	HUBERT's & PDIL's environmental monitoring team visit the monitoring locations as per schedule of monitoring.

