

Hindustan Urvarak & Rasayan Limited

(A Joint Venture of NTPC, CIL, IOCL, FCIL & HFCL)

Barauni, Urvarak Nagar, Begusarai-851115 (Bihar)

Ref. No.: HURL/BR/EC/C/01

Date: 29/11/2023

To,
Regional Office (Eastern Central Zone)
Ministry of Environment, Forest and Climate Change,
Bungalow No. A-2,
Shyamali Colony.

Ranchi - 834002.

Subject: Regarding submission of Six months EC compliance report on PARIVESH portal by of M/s Hindustan Urvarak & Rasayan Limited (HURL)-Barauni Compliance Report for April-2023 to September-2023.

Ref: (i) MoEF&CC, Environmental Clearance Letter No. J-11011/371/2016-i All (i) dated: 29.08.2017.

Dear Sir,

With reference to the subject as mentioned above, please find attached herewith the Six months EC compliance report for the period October-2022 to March-2023 with all annexures and same have been uploaded on PARIVESH portal.

For & on behalf of HURL Barauni,

(Karanam Manoranjan Babu) Vice President (TS & Production)

Encl: As above.
CC: Regional officer,
Bihar State Pollution Control Board
Barauni Industrial area
Begusarai.

CC: Regional Directorate – KOLKATA

Central Pollution Control Board,

Ministry of Environment, Forest and Climate Change, Govt. of India,

'South end Conclave' Block-502, 5th & 6th Floor, 1582,

Razidanga, Main Road, Kolkata-700107

SI. No.	EC Conditions	Self-	0
(A)	Specific Conditions	Declaratio	n Compliance status
1.	Emissions limits for the pollutants from the DG sets and the stack height, shall be in conformity with the extant statuar regulations and/or the CPCB guidelines in this regard.	e Complied	Diesel Generator Sets are being used only in case of total Power Failure for safe shutdown of the Plants Normally, the Complex Power requirement is being met from NBPDCL and Natural Gas based HURL ow Captive Power Generation (2 Gas Turbines). Adequate stack height provided to ensure the statutory resolution.
2.	To control source emissions, scrubber and/or other suitable pollution control device shall be installed to meet the prescribed Particulate Matter emission norms of 50 mg/Nm3, and also the NAAQS.	Complied	statutory regulations & guidelines. This has been addressed in the Feasibility Report of the project during design stage of the plant itself and shall be complied during operation phase. Design considerations include scrubbers, adequate height of prilling tower and other gas sensors/control measures in the plant to meet emission norms as per NAAQS.
1	Fresh water requirement shall not exceed 5.36 cum/ton of Urea production. Fresh water shall be sourced from River Ganga only after the required permission from the concerned authority. During construction phase, ground water may be used after prior permission in this regard from the concerned regulatory authority.	Complied	AAQ analysis report is attached as Annexure-I Fresh water supply is sourced from river Ganga. Requisite NOC has been accorded by Central Water Commission (CWC). However, it is ensured that the fresh water requirement does not exceed 5.36 cum/ton of Urea production.
k e s	As already committed by the project proponent, no waste/treated water shall be discharged outside to ensure ZLD. The effluent discharge, if any, shall meet the standards for 'Nitrogenous Fertilizer industry' prescribed under the environment (Protection) Rules, 1986.	Agree to Comply	Presently ZLD Commissioning activity is at the final stage. As the Project is based on Zero liquid discharge concept entire wastewater generated will be treated upto tertiary level in ETP inside the plant and being sent to RO for further reuse.
g a p a	the project proponent shall develop treenbelt in an area of 33% i.e., nearly 116 cres out of 350 acres of plant area of the roject. The green belt of 30 m width round periphery shall be provided.	Y /	Presently new peripheral boundaries and internal roads are partially developed. Tree plantation around periphery will be complied as per the given condition after completion of roads and boundary wall work. Budgetary offer for plantation inside the plant has been received from the State Forest Department (DFO Begusarai). This proposal will be submitted to the Competent Authority for further approval. Within the plant premises, approximately 41.30 acres of land has been designated for the creation of a green belt, out of a total area of approximately 116 acres.
co of CC	anted in nearby villages with the insultation of the villagers. Survival rate plants shall be reported to RO, MoEF & in 6 monthly compliance report.	compiled !	Plantation work is awarded to State Forest dept on depositary work basis. 25000 plats planted by State Forest dept. (DFO Begusarai) in FY 2022-23 and survival rate of plants in Oct 2023 attached as Annexure-II
All Pul me sat bud acc	the commitments made during the Ablic Hearing/ Public Consultation ceting held on 29th April, 2017 shall be isfactorily implemented and adequate dget provision shall be made cordingly.	Agree to Accomply H	All the commitments made during Public Hearing/Public Consultation meeting held on 27th April, 2017 are being complied for which adequate budget was considered in the project cost.
At	Noct chall be some at the	gree to Tomply in	The Enterprise Social Commitment (ESC) will be implemented according to the specified conditions

KriBalay

			outlined by the Project. HURL is responsible for
o fi s N III	nterprise Social Commitment (ESC) based n local needs and action plan with mancial and physical breakup/details hall be prepared and submitted to the Ministry's Regional Office at Ranchi. Implementation of such program shall be ensured accordingly in a time bound manner.		developing a detailed action plan and budget. Currently, HURL management is reviewing a proposal titled "Improvement/Augmentation of Education & Related Infrastructure" for selected Government Schools in Barauni, Begusarai district, under the Corporate Environmental Responsibility (CER) initiative. The site-level committee has recommended an estimated cost of Rs. 20,92,56892/- (Rupees twenty crores ninety-two lakhs fifty-six thousand eight hundred ninety-one only) for this project, which is under consideration.
	A regular environment manage.	Agree to Comply	plant are being looked after by a permanent Manager level officer Mr. Srinu Pitta. Environmental Monitoring work has been outsourced to an external agency. Action has also been taken for further
10.	Continuous online (24x7) monitoring system for emissions and effluent generation shall be installed for flow/discharge measurement and the pollutants concentration within the plant. Data shall be uploaded on company's website and provided to the respective RO of	Agree to Comply	Continuous online(24x7) monitoring system for stacks emissions has been installed at site. Its Connectivity with server is under progress (at CPCB). At present manual display board for environment data (EC required data) display has been installed and data is being updated regularly.
11.	MoEF&CC, CPCB and SPCB. The unit shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling. Firefighting system shall be as	Complied	Plant is equipped with adequate measures for control of failures/ hazards. Firefighting facilities are implemented as per norms.
12.	per the norms. Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Complied	Regular health check-up/monitoring of the commissioning laborers are being done and records have been maintained for the same. All the workers are ensured to be equipped with PPEs such as helmets, hand gloves, boots etc. before entering into plant site.
13.	Storage of hazardous raw material shall not exceed more than 7 days.	Complied	Storage of raw materials addressed in the Feasibility Report and EIA (HAZID & ENVID) report of the Project, being complied with the stated condition.
14.	Urea dust shall be controlled by prescribed standard technique.	Complied	This is addressed while designing the prilling tower w.r.t height of UPT, gas sensors, manual PM monitoring etc. to control emission of urea dust and subsequent loss/ environmental pollution. The urea dust concentration is less than 50 mg/Nm3 or below 0.5 Kg/MT of urea produced. Following control measures adopted to ensure the above concentration: • Provided adequate free fall height • Maintaining the moisture content in the melt below 0.5% to increase prill strength. • Prilling Tower of special design installed to maintain uniform and low velocity profile of cooling air. • The louvers of the prilling tower designed in such

Si

Korksalan

	creche etc. The housing may be in the		been kept at designated places and being disposed as
	form of temporary structure to be removed after the completion of the		per provisions of Construction and Demolition Waste Management Rules, 2016.
	project. All the construction wastes shall	7.5	Widning Circle Nates, 2010.
	be managed so that there is no impact on		
	the surrounding environment.		
(B)	General Conditions		
1.	The project authorities shall strictly adhere to the stipulations made by the State Pollution Control Board (SPCB), State Government and any other statutory authority.	Complied	It is being complied regularly.
2.	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	Complied	Noted, there is no further expansion or modifications in the plant is envisaged at this stage. However, as and when required, a fresh reference shall be made to the MoEF&CC, Gov. of India.
3.	The locations of ambient air quality monitoring stations shall be decided in consultation with the State Pollution Control Board (SPCB) and it shall be ensured that at least one stations is installed in the upwind and downwind direction as well as where maximum ground level concentrations are anticipated.	Complied	The locations of ambient air quality monitoring have been decided in consultation with the Bihar State Pollution Control Board (BSPCB) and HURL officials for monitoring of Air Quality during construction /commissioning phase. 06 Nos. of AAQMS have been installed in the project area, out of which one station is selected in up-wind (East) and one station is selected in down-wind (West) directions.
4.	The National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R. No. 826(E) dated 18th November, 2009 shall be followed.	Complied	Being Complied.
5.	The overall noise levels in and around the plant area shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under the Environment (Protection) Act, 1986 Rules, 1989 viz. 75 dBA (day time) and 70 dBA (night time).	Complied	The noise levels are maintained within the standard prescribed limits by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. (Data attached as Annexure-1)
6.	The Company shall harvest rainwater from the roof tops of the buildings and storm water drains to recharge the ground water and use the same water for the process activities of the project to conserve fresh water.	Being to Comply	Rain water harvesting system is provided to collect water from all the plant buildings viz. admin, control rooms and laboratory as well as surface run off to ensure effective rain water harvesting and subsequent ground water recharge. As per envisaged plan, buildings like control room, operator room, maintenance building, canteen, laboratory building etc. will be having rain water harvesting facility. These are completed.
7.	Training shall be imparted to all employees on safety and health aspects of chemicals handling. Pre-employment and	Agree to Comply	All Employees are imparted training on safety and health aspects of chemicals handling.

			the air entering the louvers located in the bottom of PT shall generate low velocity cooled air. • Maintaining optimum melt temperature • Use of special design prilling buckets, etc. Besides above, all safety valves exhaust, which operates during occasional upsets, connected to Blow-down Stacks and the inerts shall be vented through 93-m high Vent Stacks.
15.	In Urea Plant, particulate emissions shall not exceed 50 mq/Nm³, Monitoring of Prilling Tower shall be carried out as per CPCB guidelines.	Complied	Particulate Emissions are within the 50 mg/Nm3. Urea Prilling tower Emissions are being monitored as per the CPCB Guidelines. Emission Monitoring report attached as Annexure-I.
16.	The levels of PM ₁₀ (Urea dust), SO ₂ , NO _x , Ammonia, Ozone and HC shall be monitored in the ambient air and displayed at a convenient location near the main gate of the company and at important public places. The company shall upload the results of monitored data on its website and shall update the same periodically. It shall simultaneously be sent to the Regional office of MoEF&CC, the respective Zonal office of CPCB and the SPCB.	Complied	The levels of PM10 (Urea dust), SOx, NOx, Ammonia, Ozone and HC in the ambient air are being monitored since the construction phase by external agencies, having CPCB recognized laboratories. (Monitoring Report for April 2023 to September 2023 attached as Annexure- I). Currently monitoring data is updated manually at outside of Plant Gate. Six monthly compliance reports with monitoring results are uploaded on HURL's website and its regular updating is done periodically. Simultaneously, every six-monthly compliance report is also being sent to the Regional office of MoEF&CC, the respective Zonal office of MoEF&CC and BSPCB as per stated condition.
17.	In plant, control measures for checking fugitive emissions from all the vulnerable sources shall be provided. Fugitive emissions shall be controlled by providing closed storage, closed handling & conveyance of chemicals / materials, multi cyclone separator and water sprinkling system. Fugitive emissions in the work zone environment, product, raw materials storage area etc. shall be regularly monitored. The emissions shall conform to the limits stipulated by the SPCB.	Complied	The water sprinkling is being done on regular basis for dust suppression in and around site. Air Quality is being monitored in work zone environment as per monitoring plan for assessment of pollution level during the operation phase (Annexure-I). The technology has inherent design features for minimum gaseous emissions. Gaseous raw materials, Liquid product, gaseous product, urea product and chemicals are handled in the closed system. Fugitive emission surveys are carried out to monitor emission in the work zone environment, product area etc. and are regularly monitored. Fugitive emissions monitored confirm the emission limits stipulated by as per SPCB norms.
18.	The company shall obtain Authorization for collection, storage and disposal of hazardous waste under the Hazardous waste "(Management, Handling and Trans-Boundary Movement) Rules, 2016 and amended as on date for management of Hazardous wastes. Measures shall be taken for fire 'fighting facilities in case of emergency.	oy amod	Authorization has been obtained from BSPCB for Authorization for collection, storage and disposal of hazardous waste under the Hazardous & other Waste (Management, Handling and Trans-Boundary Movement) Rules, 2016. Adequate fire-fighting facilities have been provided and maintained for meeting the emergencies
19.	Provision shall be made for the housing for the construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile sewage treatment plant, safe drinking water, medical health care,		The plant is at the operation stage. However, all necessary compliances were ensured during the construction phase. Majority of the construction wastes have been removed in an environmentally friendly manner. However, the remaining construction wastes had

1			
0	routine periodical medical examination for all employees shall be undertaken or regular basis. Training to all employees of handling of chemicals shall be imparted.	on l	Pre-employment and routine periodical medical examinations for all employees is being undertaken on regular basis.
8.	The company shall comply with all the environmental protection measures an safeguards proposed in the document submitted to the Ministry. All the recommendations made in the EIA/EMP is respect of environmental management risk mitigation measures and public hearing shall be implemented.	d Comply	This condition will be complied in totality as stated. HURL has taken care of compliance with all the pollution control measured at every single step wherever suggested/possible at design stage itself. This includes provision of suitable UPT, scrubbers, stacks, ETP with ZLD, equipment's with acoustic enclosures, development of green belt/ green cover, rain water harvesting system etc. The effective implementation of all env. Pollution control
9.	The company shall undertake all relevant measures for improving the socioeconomic conditions of the surrounding area. CSR activities shall be undertaken by involving local villages and administration.	Comply	measures have been ensured in operational phase. CSR activities are being undertaken as and when applicable. However, some initiatives are under implementation as well as under consideration aimed at improving the socio-economic conditions of the surrounding area, as part of fulfilment of the obligations under ESC/ PH issues.
10.	developmental measures including community welfare measures for overall improvement of the environment.	Comply	All eco-developmental measures including community welfare measures for overall improvement of the environment will be undertaken by involving local villages and administration as per rule and Government guidelines.
11.	A separate Environmental Management Cell equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.	Being to Comply	The EC conditions relating to establishment of Environmental Cell have been complied with and the following arrangement for environment cell is in place. 1) At present environment cell is headed by Mr. K M Babu, V P (Technical Services & Production), who is reporting to Mr. Sanjai Kumar Gupta, HURL Barauni Project Head. & 2) Mr. Srinu Pitta, Manager (Env. & QC) 3) Mr. Harjeet Singh, AM (Env. & QC) Full-fledged laboratory facilities are established to carry out the Environmental Management and Monitoring functions.
12.	The company shall earmark sufficient funds towards capital cost and recurring cost per annum to implement the conditions stipulated by the Ministry of Environment, Forest and Climate change as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so earmarked for environment management pollution control measures shall not be diverted for any other purpose.	Agree to Comply	Being Complied.
13.	A copy of the clearance letter shall be sent by the project proponent to concerned Panchayat, Zila Parisad/Municipal Corporation, Urban local Body and the local NGO, if any, from whom suggestions,	Complied	Complied.

Sall .

Wir bay

Page-5

	representations, if any, were received while processing the proposal.		and the size of the compliance
.4.	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated Environmental Clearance conditions including results of monitored data (both in hard copies as well as by-mail) to the respective Regional Office of MoEF&CC, the respective Zonal Office of CPCB and SPCB. A copy of Environmental Clearance and six-monthly compliance status reports shall be posted on the website of the company.	Complied	Being Complied. Regularly six-monthly compliance report is being submitted to MOEF & CC zonal office (both in hard copies as well as by-mail) and posted on the website of the company.
15.	The environmental statement for each financial year ending 31st March in Form-V as is mandated shall be submitted to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental clearance conditions and shall also be sent to the respective Regional Offices of MoEF&CC by-mail.	Complied	Being Complied.
16.	The project proponent shall inform the public that the project has been accorded' environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be seen at Website of the Ministry at http://moef.nic.in.This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the concerned Regional Office of the		Complied
17		e II d	Complied.

Wikaloy

that in Poll

Ambient Air Quality Monitoring Data

							Parameters	notors					
DAY	DATE	PM ₁₉ (µg/m³)	PIM _{2.5} (µg/m²)	SO ₂	NO _x (ua/m³)	C _c H _c	Benzo (a)pyrene	CO	NH ₃	Ozone	Z	As	Lead
NAAQ Standards	ndards	100	60	80	08	200	(mg/m)	i infant	l might	(m/bd)	(mg/m)	(mg/m)	m/grl)
MonTes	001040400		2	2	00	00	0.1	0.5	400	180	20	90	7
MOEN TOE	U3/U4:U4:Z3	144	0/	13.5	24.4	<0.01	<0.01	0.38	1211	176	iod	200	100
Fri/Sat	07/08.04.23	128	09	11.6	19.2	<0.01	<0.00	0.33	1450	0.04	DOD!	BUL	BUL
Mon/Tue	10/11.04.23	146	71	13.8	247	100	000	00.0	7.01	0.0	BUL	BUL	BDL
Fri/Sat	14/15 04 23	400	63	0 77	200	10.0	0.07	0.41	142.0	19.8	BDL	BDL	BDL
Monte	471600100	120	70	14.6	24.0	<0.01	40.01	09.0	236.2	20.9	BDI	BDI	BOI
Mon/ Tue	17/18.04.23	110	54	12.3	19.4	<0.01	<0.01	0.53	1570	175	100	100	100
Fri/Sat	21/22.04.23	132	63	13.8	000	1000	100	0000	0.70	0.71	BUL	BDL	BDL
Mon/Tue	24/25.04.23	100	50	44.0	400	500	10.0	0.37	102.2	16.0	BDL	BDL	BDL
Fri/Sat	28/29 04 23	136	000	2 0	0.00	10.0	F0.0>	0.61	155.6	20.7	BDL	BDL	BDL
No of observations	rustione	000	000	0.0	23.9	<0.07	<0.01	0.54	190.0	18.8	BDL	BDL	BDI
2000	CHORDIS	0	2	20	80	00	8	8	8	8	o	×	0
Min. Concentration	ntration	100	50	11.3	18.8	<0.01	<0.01	033	1022	46.0	100	0	0 0
Max. Concentration	intration	146	71	15.3	24.7	<0.01	<0.01	0.00	3.70	0.00	DOL	BUL	BDL
Average		127.9	62.3	13.3	22.4	100	1000	0.00	7.007	60.9	BUL	BDL	BDL
98th percentile	ile	146.0	707	45.0	200	10.07	10.0	0.47	153.8	18.5	BDL	BDL	BDL
OTE: BA!	MOTE: On! - Dailer	200	100	7.01	1.47	L0.0>	<0.01	0.61	229.7	20.8	ROI	I Ca	DO

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

15 of 47

at Barauni Tuti an an POIL

Ambient Air Quality Monitoring Data

Period of Monitoring: April 2023 Location: Simariya Village (SA2)

1							Parameters	eters			
DAY	DATE	PM10	PM _{2.5}	SO ₂	NO _x (mg/m³)	C ₆ H ₆ (µg/m³)	Benzo (a)pyrene (na/m³)	(mg/m³)	(mg/m³)	Ozone (µg/m³)	iN (mg/m)
	de ede	400	80	80	80	05	10	02	400	180	20
NAAC Stan	dards +	400	GA GA	13.4	23.1	<0.01	<0.01	0.30	<20	17.5	BDL
Mon/ I ue	02/04/04/02	100	5 6	147	207	<0.01	<0.01	0.27	<20	16.5	BDL
Frivat	01/00.04.23	140	22	46.3	20.5	<0 01	<0.01	0.52	<20	22.8	BDL
Mon/Tue	10/11,04.23	011	10	0.01	2000	1000	1007	0.58	<20	20.2	HOL
Fri/Sat	14/15,04,23	115	22	17.4	6.62	10.0	000	N V	007	18.0	BDI
Mon/Tue	17/18.04.23	120	58	14.3	16.0	<0.01	20.0	2 0	000	000	TO a
Fri/Sat	21/22,04.23	124	63	13.7	16.6	<0.01	<0.01	0.25	075	7.61	200
MANTERS	24/25/04/23	106	54	12.4	16.8	<0.01	<0.01	0.47	<20	22.3	PUL
MOIN OF	24700 04 23	113	28	15.0	22.4	<0.01	<0.01	0.51	<20	18.9	BDL
TIVOAL	20120.04.20	2 0	8	00	8	8	80	8	8	80	00
No. of obser	ryanons	400	2	42.4	16.0	<0.01	<0.01	0.25	<20	16.5	BDL
Min. Concer	Tration	100	50	47.4	30.5	<0.01	<0.01	0.58	<20	22.8	BDL
Max. Conce	ntration	671	40 4	44.1	24.5	×0.01	<0.01	0.42	<20	19.5	BDL
Average		118.3	0.00	0.4	4.1.4	10.00	1007	0.67	<20	22.7	BDL
98th norrentile	ile	128.1	64.0	1/.1	C.87	10.0	10.00	0.00			

BDL BDL BDL BDL

(ng/m³)

98" percentile
NOTE: BDL = Below Detection Limit

16 of 47

PDIL

Ambient Air Quality Monitoring Data

Period of Monitoring: April 2023 Location: HURL Township (SA3)

							Parame	sters					
DAY	DATE	PIM ₁₀ (µg/m³)	PM2.5 (µg/m³)	SO ₂ (µg/m³)	NO, (mg/m³)	C ₆ H ₅ (µg/m³)	G ₆ H ₆ Benzo CO Ig/m³) (ng/m³) (mg/m	(mg/m³)	(µg/m³)	Ozone (µg/m³)	(ng/m³)	As (ng/m³)	Lead (ug/m²)
NAAQ Standards		100	09	80	80	90	10	02	400	180	20	90	1.0
Mon/Tue	03/04.04.23	102	90	12.3	19.3	<0.01	<0.01	0.27	<20	15.4	BDL	BDL	BDL
Fri/Sat	07/08.04.23	108	53	11.9	18.5	<0.01	<0.01	0.25	<20	16.1	BDL	BDL	BDL
Mon/Tue	10/11.04.23	113	99	15.3	23.4	<0.01	<0.01	0.32	<20	17.9	BDL	BDL	BDL
Fri/Sat	14/15.04.23	105	51	16.0	21.5	<0.01	<0.01	0.43	<20	18.0	BDL	BDL	BDL
Mon/Tue	17/18.04.23	95	49	13.0	16.4	<0.01	<0.01	0.33	<20	18.2	BDL	BDL	BDL
Fri/Sat	21/22.04.23	117	58	11.3	15.8	<0.01	<0.01	0.20	<20	15.7	BDL	BDL	BDL
Mon/Tue	24/25.04.23	06	46	10.8	14.9	<0.01	<0.01	0.29	<20	19.0	BDL	BDL	BDL
Fri/Sat	28/29.04.23	110	. 56	13.0	19.6	<0.01	<0.01	0.42	<20	17.5	BDL	BDL	BDL
No. of observations	rvations	00	80	80	00	88	80	89	00	80	80	8	80
Min. Concentration	ntration	90	46	10.8	14.9	<0.01	<0.01	0.20	<20	15.4	BDL	BDL	BDL
Max. Concentration	entration	117	58	16.0	23.4	<0.01	<0.01	0.43	<20	19.0	BDL	BDL	BDL
Average	THE STREET	105.1	52.4	12.9	18.7	<0.01	<0.01	0.31	<20	17.2	BDL	BDL	BDL
98" percentile	tile	116.5	57.8	15.9	23.1	<0.01	<0.01	0.42	<20	18.9	BDL	BDL	BDL
							-	-					

NOTE: BDL = Below Detection Limit

ttale PDIL

Ambient Air Quality Monitoring Data

	The second second						Parameters	iters					
DAY	DATE	PM ₁₆ (µg/m³)	PM _{2.5} (µg/m³)	SO ₂ (µg/m³)	NO _x (mg/m³)	C _e H _e (µg/m³)	Benzo (a)pyrene (ng/m³)	(mg/m³)	(mg/m³)	Ozone (µg/m³)	Ni (ng/m³)	As (ng/m³)	Lead (hg/m²)
NAAQ Standards	ndards .	100	09	80	. 80	05	01	02	400	180	. 20	90	1.0
Mon/Tue	03/04.04.23	162	78	16.0	25.4	<0.01	<0.01	0.41	130.0	18.4	BDL.	BDL	BDL
Fri/Sat	07/08.04.23	141	68	14.3	24.3	<0.01	<0.01	0.38	164.9	19.3	BDL	BDL	BOL
Mon/Tue	10/11.04.23	184	06	17.1	27.0	<0.01	<0.01	0.40	131.0	21.0	BDL	BDL	BDL
Fri/Sat	14/15.04.23	159	11	16.6	25.9	<0.01	<0.01	0.58	170.3	19.5	BDL.	BDL	BDL
Mon/Tue	17/18.04.23	176	85	14.5	20.7	<0.01	<0.01	0.41	123.8	21.7	BDL	BDL	BDL
Fri/Sat	21/22.04.23	155	75	13.7	21.0	<0.01	<0.01	0.43	134.6	18.4	108	BDL	BDL
Mon/Tue	24/25.04.23	132	65	12.6	20.3	<0.01	<0.01	0.35	125.7	22.1	3DF	BDL	BDL
Fri/Sat	28/29.04.23	177	84	17.8	25.4	<0.01	<0.01	0.58	176.0	21.1	BDL	BDL	BDL
No. of observations	rvations	80	8	80	8	80	89	80	80	8	8	8	8
Min. Concentration	ntration	132	65	12.6	20.3	<0.01	<0.01	0.35	123.8	18.4	BDL	BDL	BDL
Max. Concentration	ntration	184	90	17.8	27.0	<0.01	<0.01	0.58	176.0	22.1	BDL	BDL	BDL
Average		160.8	77.8	15.3	23.8	<0.01	<0.01	0.44	144.5	20.2	BDL	BDL	BDL
98th percentile	ile	1827	89.3	17.7	26.8	<0.01	<0.01	0.58	175.2	22.0	BDI	BDL	BDL

NOTE: BDL = Below Detection Limit

18 of 47

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

POIL BOIL

Ambient Air Quality Monitoring Data

Period of Monitoring: April 2023 Location: Chakiya Village (SA5)

	(wg/m²) 1.0 8DL
	As (ng/m³) 06 8DL
	(mg/m²) 20 20 20 20 80 80 80 80 80 80 80 80 80 80 80 80 80
	(ligim³) 180 19.7 18.5 22.2 24.1 18.2 20.0 26.4 8 8 8 8 25.4 25.4 25.4
	(µg/m³) 400 37.6 38.6 24.7 41.2 31.3 30.3 25.4 42.0 8 8 24.7 42.0 33.9
Parame	(µg/m³) (µg/m³
C _e H _e	(µg/m³) 06 00 00 00 00 00 00 00 00 00
	(ug/m²) 80 80 80.5 24.2 28.5 29.3 22.0 22.4 26.3 32.1 8 8 22.0 32.1 26.3 32.1 26.3 32.1 26.9 31.9 4
1000	14.9 14.9 14.7 16.8 17.3 15.1 14.1 17.3 17.3 17.3 17.3 17.3
	60 57 61 68 68 68 68 68 68 68 68 68 68 68 68 68
	100 116 125 137 115 128 122 8 8 105 137 137 137
ATE	4.23 4.23 4.23 4.23 4.23 1.23 1.23
DAY	NAAO Standards

DOCUMENT NO: EN00251-1000.0231-04/23, Rev. 00

19 of 47

ttates PDIL

TABLE - 3.9 Ambient Air Quality Monitoring Data

DAY DATE		(ONC)	-		1	2012	Parameters	sters	-				
										Ozone	Z	AS	707
	TE	PM10	PIM2.5	SO ₂				-100		('m/gu)	(ng/m³)	(mg/m)	9
		(mg/m²)	(mg/m²)	(m/grl)	(m/6d)	90	01	02	400	180	20 BDI	BDL	BOL
NAAO Standards	1	100	00	007	-	1		3.4	+	0.00	ica	BDL	B
Mon/Tue 03/04	.04.23	116	25	10.0	-	1	-		-	23.0	100	RDI	8
	07/08.04.23	120	57	47.8	-		-	2.1	-	21.3	RDI	BDL	m
Mon/Tue 10/11	1.04.23	134	10	13.0	-	100			-	0 40	BDI	BDL	В
20	5.04.23	106	70	15.5					+	178	BDL	BDL	B
Mon/Tue 17/18	8.04.23	130	00	15.0		1	-	_	-	200	BDL	BDL	8
Fri/Sat 21/2	2,04.23	138	00	14.4		-		-	1	20.4	BDL	BDL	В
Mon/Tue 24/2	5.04.23	102	70	17.8		4		-		8	80	8	
Fri/Sat 28/2	9.04.23	121	0	000	1100	-		-		47.8	BDL	BDL	ш
No. of observations		0	0	129		-	100	-		0.40	BDL	BDL	-
Min. Concentration	The state of the s	102	70	47.0		+	54			24.4	IOR	BDL	_
Max. Concentration		138	99	0.11		-			51	4.1.4	100	BDL	-
Average		120.8	59.4	0.01	- 1	-			-63	74.0	100		1

98" percentile NOTE: BDL = Below Detection Limit

20 of 47

4.2 Characterization of Ground Water Samples

The physico-chemical characteristics of 03 nos. of ground water samples are given hereunder:

Table - 4.2 PHYSICO-CHEMICAL CHARACTERISTICS OF GROUND WATER SAMPLES Date of Sample Collection: 29-04-2023

		expressed in mg/	Analysis Result	s	Dogules
SI. No		HURL- Bore Well (GW1)	Hand Pump - HURL Township (GW2)	Hand Pump - Chakiya Village (GW3)	Requirement (Acceptable / Permissible Limits) (IS:10500:2012
-	YSICAL			(0110)	110.10000.2012
1	pH	7.5	7.3	7.4	6.5-8.5
2	Temperature (°C)	28.7	28.2	28.5	0.5-0.5
3	Colour, HU	<5	<5	<5	FIAE
4	Odour	Agreeable	Agreeable	Agreeable	5/15
5	Taste	Agreeable	Agreeable	Agreeable	Agreeable
6	Turbidity (NTU)	<1	<1	<1	Agreeable
7	Total Suspended Solid	NT	NT	NT	1/5
8	Total Dissolved Solids	280	760	410	-
	MICAL		700	410	500/2000
1	P- Alkalinity as CaCO ₃	NIL	NIL	NIL I	
2	Total Alkalinity as CaCO	152	540	324	•
3	Chloride as Cl	36	58		200/600
4	Sulphate as SO ₄	40	82	22	250/1000
5	Nitrate as NO ₃	1.6	2.4	36	200/400
6	Fluoride as F	<0.4	<0.4	2.0	45/NR
7	Total Hardness as CaCO ₃	168	476	<0.4	1.0/1.5
8	Ca. Hardness as CaCO ₃	96	320	292	200/600
9	Mg. Hardness as CaCO.	72	156	190	75/200
10	Sodium as Na	33		102	30/100**
11	Potassium as K	4	100	44	
12	Silica as SiO ₂	12	8	6	
3	Iron as Fe	0.23	0.52	10	
IEA'	VY METALS	0.20	0.52	0.65	0.3/NR
	Manganese as Mn	BDL	BDL		
	Total Chromium as Cr	BDL		BDL	0.1/0.3
	Lead as Pb	BDL	BDL	BDL	0.05/NR
	Zinc as Zn	0.20	BDL	BDL	0.01/NR
	Cadmium as Cd	BDL BDL	0.22	0.26	5.0/15
	Copper as Cu	BDL	BDL	BDL	0.003/NR
	Nickel as Ni	BDL	BDL	BDL	0.05/1.5
	Arsenic as As	BDL	BDL	BDL	0.02/NR
	Selenium as Se	BDL	BDL	BDL	0.01/0.05
THE		BUL	BDL	BDL	0.01/NR
	Mineral Oil	Absort	44		
_	Phenolic Compound as CeHsOH	Absent	Absent	Absent	0.5/NR
	Coliform (MPN/100ml)	BDL	BDL	BDL	0.001/0.002
	(in this only	<100	<100	<100	

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

भारत सरकार का उपक्रम)

Sin

4.3 Results & Discussion

The range of concentration of important parameters of 03 nos. of ground water samples were observed as follows:

TABLE - 4.3

Ground Water Quality at a Glance in Comparison to IS: 10500 (2012)

	Pange	of reco	orded Concentration essed in mg/l except pH)	No. of Samples exceeding	No. of Samples exceeding Permissible
Parameters	Min. Max Requirement (Acceptable / Permissible) Limits(IS:10500:2012)		Acceptable limits as per IS:10500:2012	Limits as per 15:10500:2012	
Н	7.3	7.5	6.5 - 8.5	3/3	0/3
Total Dissolved Solids	280	760	500 / 2000	1/3	0/3
Total Alkalinity as CaCO ₃	152	540	200 / 600	2/3	0/3
Total Hardness,	168	476	200 / 600	2/3	0/3
as CaCO ₃	22	58	250 / 1000	0/3	0/3
Chloride as Cl			200 / 400	0/3	0/3
Sulphate as SO ₄	40	82	45 / NR	0/3	0/3
Nitrate as NO ₃ Iron as Fe	0.23	0.65	0.3 / NR	2/3	-

The physico-chemical characteristics of the ground water samples were in good agreement with IS:10500 (2012). All the parameters are within the limits specified under Drinking Water Standard (IS:10500-2012). As regards heavy metals, Fe has been recorded with higher concentration and crossed the acceptable limit at all the locations. The ground water after proper filtration and disinfection can be safely used for potable and drinking purposes.

5.2 Characterization of Surface Water Samples

The physico-chemical characteristics of 03 nos. of Surface water samples are given hereunder:

PHYSICO-CHEMICAL CHARACTERISTICS OF SURFACE WATER SAMPLES Date of Sample Collection: 29-04-2023

	SI. No.	(Results are express	Gan	ga	Bihat		Requirem
1			Rive		Village (Pond)	Na	Permissib
-	PHY	SICAL			SW2	SV	Limits)
	1	Temperature (°C)					(IS:10500:20
	2	Colour, HU	28.3		28.0	1 00	
	3	Turbidity (NTU)	<5		<5	28.	
	4	PH	6		8	< 5	3/2/3
- British	5	Total Dissolved Solids	7.2	1	7.6	10	1/3
6	3	Suspended Solids	200			7.4	
C	HEN	MICAL	20	-	650	540	500/2000
1		Total Alkalinia	1 20		34	30	-
2	1	Total Alkalinity as CaCO ₃ Chloride as CI	140	-	222		
3	_	Sulphate as CI	20	-	326	300	200/600
4	W	Sulphate as SO ₄ Nitrate as NO ₃	14		136	110	250/1000
5	F	Thorage as NO ₃	1.3	-	54	32	200/400
6	1	luoride as F	<0.4		3.6	2.6	45/NR
7	0	otal Hardness as CaCO ₃	-		<0.4	< 0.4	1.0/1.5
8	745	dicital halfinger or o	150		192	176	200/600
9	Action Control of the Control		76		130	106	75/200
-		Soone Oxygen (DO)	74		62	70	75/200
10	101	00	7.2	6	,6	6.4	30/100**
11	BO	OD (3 days at 27 C)	3.8	1.	2.6	9.5	
12	00	odium as Na	1.4		1	3.0	-
13	Po	tassium as V	15	-	55		-
HE/	AVY	METALS	2	2		135	-
1	Iro	n as Fe		-	1	17	-
2	Ma	nganese as Mn	0.10	0.1	18	0.11	
3	Tot	al Chromium as Cr	BDL	BD		0.14	0.3/NR
1	Lea	ad as Pb	BDL	BD		BDL	0.1/0.3
,	Zine	c as Zn	BDL	BD	MARKET THE PARTY OF THE PARTY O	BDL	0.05/NR
	Car	dmium as Cd	0.16		-	BDL	0.01/NR
	Con	oper as Cu	BDL	0.3 BD		0.30	5.0/15
	Nich	cel as Ni	BDL	BD		BDL	0.003/NR
	Arce	enic as As	BDL	BDI	-	BDL	0.05/1.5
0	Solo	anic as As	BDL	BDI		BDL	0.02/NR
	ERS	enium as Se	BDL	BDI	-	3DL	0.01/0.05
1		aral Oil		DU	-	BDL	0.01/NR
+	Dhe	eral Oil	BDL	BDI	-		
	Calif	nolic Compounds	BDL		-	BDL	0.5/NR
1	COII	orm Organisms (MPN/100ml)	690	900	-	DL	0.001/0.002
				300	1 11	040	

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

भाग विश्वास अवस्था अव जिल्ला अवस्था अवस्था

Cili

5.3

All the physico-chemical characteristics of 03 nos. of surface water samples Results & Discussion showed great resemblance with respect to the characteristics like temperature, turbidity, pH, colour, odour, chloride, sulphate, total alkalinity, total hardness, TDS and heavy metals, etc. The range of concentrations of the parameters of surface water characteristics were observed as follows:

TABLE - 5.3 Surface Water Quality at a Glance

		- interests	recorded on (Results ng/I except pH)	No. of Samples exceeding	No. of Samples exceeding Permissible	
Parameters	Min.	Max.	(Acceptable / Permissible)	Acceptable limits as per IS:10500:2012	Limits as per IS:10500:2012	
			(IS:10500:2012)	3/3	0/3	
	7.2	7.6	6.5-8.5	3/3	3/3	
pH	6	10	1/5	2/3	0/3	
Turbidity	200	650	500 / 2000	210	0.10	
Total Dissolved Solids	200		200 / 600	2/3	0/3	
Total Alkalinity as	140	326	2007000	1	- 10	
CaCO ₃	-	-	200 / 600	0/3	0/3	
Total Hardness, as	150	192	200 / 600		0/3	
CaCO ₃	- 00	136	250 / 1000	0/3	0/3	
Chloride as CI	20		200 / 400	0/3		
Sulphate as SO ₄	14	54	45/NR	0/3	0/3	
Nitrate as NO ₃	1.3	3.6	- CAND	0/3	-	
Iron as Fe	0.10	0.18	U.3 / NK			

TABLE - 5.4 Characterization of SWQ as per Bathing Standard Prescribed by CPCB (Series PCLS:02/2010)

	Prescribed Limit	Remarks
Criteria	Frescribed	Recommended
Coliform MPN/100 ml	Desirable - 500 Permissible - 2500	Slightly higher than the Standard
	6.5-8.0	Slightly nigher than the standard
pH	5 mg/l or more	Recommended
BOD 3 days at 27 C	3 mg/l or less	No SW recommended for bathing

6.2 Results

The recorded results are as follows.

AMBIENT NOISE LEVEL DATA DURING DAY TIME (HOURLY)

Time (Hrs)	NOISEL		Noise	Level, dB(IME (HOL	JRLY)
6.00 -7.00	SN ₁	SN ₂	CN	Level, dB	A)	
7.00-8.00	49.1	46.3	-1113	SN ₄	SNs	SN
8.00-9.00	50.4	46.9	10,1	46.7	47.2	47.5
9.00.40.00	50.9	47.5	40.0	47.8	48.3	
9.00-10.00	50.1	48.3	46.8	48.4	48.9	48.1
10.00-11.00	52.2	49.7	48.1	49.2	51.2	48.7
11.00-12.00	53.8		50.7	50.7	52.7	50.5
12.00-13.00	54.8	52.0	52.6	53.1		51.6
13.00-14.00	56.6	54.0	53.9	55.0	54.1	53.8
14.00-15.00	59.6	55.8	54.8	56.9	56.1	55.7
15.00-16.00		56.2	55.4	57.3	58.0	57.6
16.00-17.00	58.3	55.2	53.4		57.5	57.8
17.00-18.00	57.0	54.8	52.1	56.3	57.4	57.0
18.00-19.00	54.4	52.2	50.2	55.9	57.0	56.6
9.00-20.00	54.0	50.5	47.5	53.3	54.3	54.0
0.00-20.00	53.6	48.5	The state of the s	51.5	52.5	52.2
1.00.00	52.3	47.5	46.3	48.9	49.9	50.1
1.00-22.00	51.8	47.0	45.6	48.0	49.0	
Minimum	49.1		44.6	47.4	47.9	49.2
Maximum	59.6	46.3	44.6	46.7	47.2	48.3
Average	53.7	56.2	55.4	57.3		47.5
-eq (Day)	54.7	50.8	49.6	51.7	58.0	57.8
	54.7	52.1	51.0	53.1	52.6	52.4
				00.1	54.1	53.8

Table - 6,3

AMBIENT NOISE LEVEL DATA DURING NIGHT TIME

Time (Hrs)	-		Noise L	evel, dB(A	IGHT TIM	E
	SN,	SN ₂	CAL)	
22.00-23.00	49.9	45.7	SN ₃	SN ₄	SNs	SN ₆
23.00-24.00	47.8		43.8	46.6	44.7	
24.00-1.00		44.7	42.5	46.1	43.4	46.5
1.00-2.00	46.9	43.0	41.3	44.3		44.6
	44.0	42.3	41.2	-	43.0	44.1
2.00-3.00	45.2	43.5		42.7	42.5	42.5
3.00-4.00	45.8	44.0	41.1	43.9	42.5	42.7
4.00-5.00	46.5		41.4	44.4	43.3	43.3
5.00-6.00		44.6	42.3	45.0	44.3	-
Minimum	47.5	45.1	43.2	45.6	45.9	43.9
	44.0	42.3	41.1	42.7		45.9
Maximum	49.9	45.7	43.8		42.5	42.5
Average	46.7	44.1		46.6	45.9	46.5
eq (Night)	47.0		42.1	44.8	43.7	44.2
		44.2	42.2	45.0	43.8	44.4

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

आयोश छोकर 38 of 47 जायोश छोकर 38 of 47 व्यावस्थान स्थानस्थान प्रवादस्थान स्थानस्थान (क्षेत्रीय प्रदूषण सिवाय कोडी प्रवादस्य प्रवाद स्थानस्था स्थानस्था प्रवादस्य प्रवाद स्थानस्था स्थानस्था

^{वर्धस्} PDIL

TABLE - 6.4

AMBIENT NOISE LEVEL DATA - AROUND BOUNDARY WALLS

IENT NOISE LEVEL	Noise Lev	el, dB(A)	
		Night	
Name of Location		45.4	
		45.1	
Eastern Boundary		48.8	
Mestern Boundary	57.2	46.5	
Northern Boundary	56.0	40.0	
Southern Boundary			
	Name of Location Eastern Boundary Western Boundary Northern Boundary	Eastern Boundary 56.3 Western Boundary 57.2 Northern Boundary 56.0	

Table - 6.5
SUMMARY OF AMBIENT NOISE LEVEL

30111	24-hrs	Day time	NOISE LI	Prescribed Li	NAAQS	-
Sampling Locations	Avg Leq.	L _{eq.} Value	Value dB(A)	Category of Area	Day Time	Night
Sampling Love	dB(A)	dB(A)		Industrial	75	70
www.renth	53.3	54.7	47.0	Area		45
dmn. Building HURL (SN1)	-	52.1	44.2	Residential Area	55	45
Simariya Village (SN2)	50.7	52.1		Residential	55	45
	49.5	51.0	42.2	Area		
HURL Township (SN3)	40.0	-	45.0	Residential	55	45
	51.7	53.1	45.0	Residential		45
Mahana Village (SN4)		54.1	43.8	Area	55	43
Chakiya Village (SN5)	52.5	54.1		Residential	55	45
	52.3	53.8	44.4	Area		1
Bihat Village(SN6)	32.0					

STANDARD FOR NOISE 6.3

The Government of India, in exercise of its power under section 16(2)(h) of the Air (Prevention and Control of Pollution) Act 1981, notified the ambient air quality standards in respect of noise (which has been included as an air pollutant under section 20 of the Amended Air Act of 1987) as follows:

Table - 6.6

		Limits in Decibels, dB (A)			
Area	Category of Area	Day Time	Night Time		
		75	70		
A	Industrial Area	05	55		
В	Commercial Area	65			
	Residential Area	55	45		
C		50	40		
D	Silence Zone	50			

- NOTE 1. Day Time is reckoned between 6 AM and 10 PM.
- 2. Night Time is reckoned between 10 PM and 6 AM.

Misied)

मारमञ्जू संस्थात का अध्यक्त। व्यक्तिम स्थापन के अध्यक्त। व्यक्तिम स्थापन के अध्यक्त।

DOCUMENT NO: EN00251-1000-0231-04/23, Rev. 00

Nitya NITYA LABORATORIES

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

- ♥ 43, Sector-A1 Ext., Bhalla Enclave, Channi Himmat, Jammu-180 015, J&K (UT), India
- C +91-191-2465597
- info@nityalab.com www.nityalab.com Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - September 2023 forAmmonia -Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

This Compliance Report is the fulfilments of the condition of the Environmental Clearance (EC) vide File No.EC [IA/BR/IND2/61377/2016, J-11011/371/2016-IA II (I)] for the period of May 2023 to September 2023 This report has been prepared by Nitya Laboratories by collecting respective samples in consultation with the State Pollution Control Board (SPCB) officials and Hindustan Urvarak and Rasayan Limited (HURL) officials During the above mentioned period the analysis of the environmental parameters has been conducted by the MOEF&CC recognized Laboratory at Nitya Laboratories, Jammu

The proposed project is located at Barauni and was commissioned on 18 November 2022 with the capacity of 2200MTPD Ammonia and 3850MTPD Urea in the District Begusarai in the state of Bihar. The commercial production has started from 19 November 2022 with the board name APNA UREA. The area falls in the agricultural

The compliance report fulfils the 19 Nos of Specific Conditions and 17 Nos. of General Conditions led by Ministry of Environment, Forests and Climate Change Rainwater Harvesting and Ground Water charging has been proposed

- Guidelines on Artificial Recharge of Water, Central Water Ground Board, Ministry of Water Resources, Gol
- Manual on Artificial Recharge of Ground Water, Central Water Ground Board, Ministry of Water Resources,
- Rain Water Harvesting and Conservation Manual Consultancy Services Organization, CPWD, Gol (2002)

The Environmental Monitoring report of 6 months w.r.t Air. Water and Noise have been presented separately with the average values. The environmental conditions and the compliance have been found normal as per the Standards. The Air Quality results have been presented through a self-explanatory table with the NAAQ Standards w.r.t the parameter PM10, PM25, NOx. Sox, C6He, CO, Benzo(a) pyrene (BAP), NH3, Ozone, Nickel, Arsenic and Lead. Three sets each of Ground Water Samples and Surface Water Samples have been collected, analyzed in a self-explanatory table, and compared with Drinking Water Standards (IS:10500:2012) The analysis consists of eight nos, of physical parameters, thirteen no's of chemical parameters, nine no's of Heavy metals and three no's of miscellaneous parameters. Noise Quality has also been measured at six different locations in the periphery of the project area. The results have been presented through self-explanatory table consisting of the Standard NAAQS

The above report with respect to Air, Water and Noise represents the average values of different sampling stations collected at different time during the study period of May 2023 to September 2023

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHOARH, FARIDABAD - 121004, HARYANA, INDIA H +91-129-2241021 +91-9013591021, +91-9013552273 www.nityalab.com

+91-191-2465597 info@nityalab.com & www.nityalab.com

43, Sector-A1 Ext., Bhalla Enclave, Channi -Himmat, Jammu-180 015, J&K (UT), India

Annexure-1

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

Env. STATEMENT for CTO Compliance for the period May 2023 - September 2023 forAmmonia -Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

TABLE- 1 Location of Air Quality Monitoring Stations

Sr. No.	Location of State	tion	Frequency
1.	HURL Admin Building(SA1)0	11119	Twice a Week
2.	Simariya Village(SA2)	9	Twice a Week
3.	HURL Residential Township(SA3)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Twice a Week
4.	Chackbali Refinery Road(SA4)		Twice a Week
5.	Chakiya Village (SA5)	100	Twice a Week
6.	Bihat Village (SA6)		Twice a Week

HURL BARAUNI, AIR QUALITY DATA - (May 2023 to September 2023)

Mont	Param	oters	NAAQS	HURL Admin Building(SA1	Simariya Village(SA2	HURL Residential Township(6A3	Chackbali Refinery Road(SA4	Chakiy a Village	Bihat Villag
h	Faraiii	GLGIS	Standar ds))))	(SA5)	(SA6)
	PM10		100	89.67	87.68	90.65	88.56	89.10	91.69
	PM2.5		60	50.12	51.69	45.69	48.65	52.06	54.38
	SO ₂	µg/m³	80	16.20	17.66	16.96	18.16	4 20.76	21 45
	NO _x		69 1	26.57	22.46	24:56	25.69	28.66	26 46
	C6H6		5	-ND	ND.	ND.	ND	ND -	CN
	BAP	ng/m³	1	ND	ND	ND .	ND '	ND.	ND
May 2023	CO	mg/m ³	2	0.42	0,39	0.38	0.40	0.51	0.55
2023	NH ₃		400	139.66	12.66	11.66	136.62	28.56	33.20
		µg/m³	180	20.26	23.58	21.69	24.26	26.36	25.86
	Ozone		20	ND	ND .	ND	ND .	ND.	ND
	-	ng/m ³	6	ND	ND.	ND .	ND .	NP	ND
	As Pb	µg/m³	1	ND -	ND #	ND	ND	10/00	ND

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

Nitya NITYA LABORATORIES

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

🕈 43, Sector-A1 Ext., Bhalla Enclave, Channi Himmat, Jammu-180 015, J&K (UT), India

NITYA LABORATORIES

+91-191-2465597

info@nityalab.com @ www.nityalab.com Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - September 2023 forAmmonia -Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

	PM10		100	93.71	91.63	91.58	93.1	92.5	93.11
	PM2.5		60	52.67	50.96	48.24	53.43	51.47	50.16
	SO ₂	µg/m³	80	18.17	18.52	17.78	19.02	19.17	19.63
	NOx		80	27.18	24.45	22.2	27.6	30.25	27.87
	С6Н6		5	ND	ND	ND	ND	ND	ND
June2 023	BAP	ng/m³	1	ND	ND	ND	ND	ND	ND
	CO	mg/m ⁵	2	0.43	0.47	0.39	0.45	0.53	0.52
	NH ₃	μg/m³	400	142.13	13.05	13.87	139.8	30.11	34.4
	Ozone	pgm	180	22,14	22.54	20.58	23.08	24.72	24.33
	Ni	ng/m ³	20	ND	ND	ND	ND	ND	ND
	As		6	ND	ND	ND	ND	ND	ND
	Pb	μg/m³	1	ND	ND	ND	ND	ND	ND
	PM10	μg/m³	100	69.70	69.77	69.71	70.01	69.81	69.82
	PM2.5		60	45.80	43.83	43.34	45.21	44.47	43.95
	SO ₂		80	13.22	13.49	13.30	14.21	14.14	14.91
	NOx		80	22.48	19.16	17.56	22.60	25.58	22.73
	C6H6		5	ND	ND	ND -	ND	ND	ND
July 2023	BAP	ng/m ³	1 -	ND	ND	ND	ND .	ND	ND
2020	CO	mg/m ³	2	0.27	0.28	0.26	0.27	0.35	0.30
	NH ₃	μg/m³	400	137.07	10.65	10.86	134.91	25.05	29.23
	Ozone	pg/m	180	17.15	17.38	15.46	17.71	19.60	19.40
	Ni	ng/m ³	20	ND	ND	ND	ND	ND	ND
	As		6	ND	ND	ND	ND	ND	ND
	Pb	μg/m³	1	ND	ND	ND .	ND	ND	ND

	PM10		400	67.47	07.70	07.00	07.00	0770	
			100		67.70	67.82	67.93	67.70	67.71
	PM2.5	μg/m3	60	44.08	42.13	41.97	43.73	42.70	41.95
	SO2		80	11.37	11.91	12.20	12.50	12.55	13.01
	NOx		80	20.36	17.30	15.96	21.31	24.08	20.97
	C6H6		5	ND	ND	ND	ND	ND	ND
Aug 2023	BAP	ng/m3	1	ND	ND	ND	ND	ND	ND
LULU	CO	mg/m3	2	0.23	0.23	0.22	0.20	0.25	0.23
	NH3		400	138.76	10.50	10.65	75.48	23.38	27.82
	Ozone	µg/m3	180	15.36	15.97	14.30	16,47	18.15	17.77
	Ni	ng/m3	20	ND	ND	ND	ND	ND	ND
	As		6	ND	ND	ND	ND	NDO	ND

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

- 43, Sector-A1 Ext., Bhalla Enclave, Channi Himmat, Jammu-180 015, J&K (UT), India
- +91-191-2465597
- info@nityalab.com www.nityalab.com
 Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 – September 2023 forAmmonia –Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

	Pb	µg/m3	1	ND	ND	ND	ND	ND	ND
	PM10		100	64.66	64.40	64.78	64.81	64.67	64.82
	PM2.5		60	41.45	38.46	39.00	40.55	39.53	38.83
	502	µg/m3	80	12.97	12.16	11.06	11.86	11.66	11.17
Sep.	NOx		80	18.21	14.87	13.37	18.25	21.52	17.65
	C6H6		5	ND	ND	ND	ND	ND	ND
	BAP	ng/m3	. 1	ND	ND	ND	ND	ND	ND
2023	CO	mg/m3	2	0.18	0.18	0.17	0.16	0.20	0.19
	NH3		400	51.91	12.36	10.78	72.36	20.70	24.53
	Ozone	µg/m3	180	12.96	13.55	11.47	13.52	15.22	15.32
	Ni		20	ND	ND	ND	ND	ND	ND
	As	ng/m3	6	ND	ND	ND	ND	ND	ND
	Pb	µg/m3	1	ND -	ND	ND	ND	ND	ND
	PM10		100	77.08	76.23	76.90	76.88	77.10	77.43
	PM2.5		60	46.82	45.56	43.26	46.36	45.15	44.46
	SO2	µg/m3	80	14.46	15.10	14.36	14.90	15.26	14.90
	NOx		80	27.01	19.80	18.45	20.32	23.40	22.49
	C6H6		5	ND	ND	ND	ND	ND	ND
Aver	BAP	ng/m3	1	ND	ND	ND	ND	ND	ND
age	CO	mg/m3	2	0.30	0.26	0.28	0.23	0.30	0.29
	NH3		400	121.56	10.36	11.36	111.83	27.56	28.61
	Ozone	µg/m3	180	18.56	18.20	17.80	19.10	19.56	18.85
	Ni	malus 2	20	ND	ND	ND	ND	ND	ND
	As	ng/m3	6	ND	ND	ND	ND	ND-	ND
	Pb	µg/m3	- 1	ND	ND	ND	ND	ND	ND

Nitya NITYA LABORATORIES Waste for Quality NITYA LABORATORIES P 43, Sector-A1 Ext., Bhalla Enclave, Himmat, Jammu-180 015, J&K (UT

♀ 43, Sector-A1 Ext., Bhalla Enclave, Channi Himmat, Jammu-180 015, J&K (UT), India

C+91-191-2465597

info@nityalab.com www.nityalab.com Annexure-1

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

Env. STATEMENT for CTO Compliance for the period May 2023 - September 2023 forAmmonia -Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

TABLE - 2

Noise Monitoring Assessment Schedule

Sr. No.	Monitoring Asses	ochedule.
	Source	
.1.	HURL Admin Building (SN 1)	Frequency
2.	HURL Simariya Village (SN 2)	Once in a Month
3.	HURL Township (SN 3)	Once in a Month
4.	HURL Mahna Village (SN 4)	Once in a Month
5.	HURL Chakiya Village (SN 5)	Once in a Month
and the same of	Near Bihat Village(SN 6)	Once in a Month
		Once in a Month

Month	Parameters	BARAUNI, NOIS	E DATA (May	2023 to Ser	otember 202	121		
		Prescribed Limits in db(A) as per NAAQS Ind./Res. Area	HURL Admin Building(S A1)	Simariya Village(S A2)	HURL Resident ial Townshi p (SA3)	Chackba li Refinery Road(SA 4)	ya Villag e	Bihat Village (SA6)
May- 2023	24 hrs. Avg Leq Value db (A) Day time Avg Leq Value		48.60	48.94	45.40		(SA5)	
	db (A)	75/55/65	52.63		45.13	47.44	42.90	56.52
	Night time Avg Leq Value			54.69	46.37	50.69	45.69	60.36
	db (A)	70/45/55	44.58	43.20	43.89	44.23	40.12	
	24 hrs. Avg Leq Value db (A)		49.90	50.72	44.30			52.69
June-2023	Day time Avg Leq Value db (A)	75/55/65	EASA			46.09	42.05	54.88
	Night time Avg Leq Value		54.54	56.08	45.23	49.74	44.53	58.90
	db (A)	70/45/55	43.65	45.36	43.37	42.45		
uly-2023	24 hrs. Avg Leq Value db (A)		69.04	A SECOND		72.45	41.56	50.86
, 2020	Day time Avg Leq Value	75/55/65	68.04	64.25	65.85	58.87	59.70	56.30
	db (A)	73733705	71.89	68.90	70.12	63.96	65,420	60.45

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA **1** +91-9013591021, +91-9013552273

labsnitya@gmail.com

www.nityalab.com

Nitya NITYA LABORATORIES

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

43, Sector-A1 Ext., Bhalla Enclave, Channi Himmat, Jammu-180 015, J&K (UT), India

C+91-191-2465597

info@nityalab.com www.nityalab.com Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - September 2023 forAmmonia -- Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

TOTAL	mmonia –Urea (2200 M			59.10	61.58	53.78	53.98	52.16
	Night time Avg Leq Value	70/45/55	64.21		67.58	58.93	61.33	56.66
	db (A) 24 hrs. Avg Leq Value	-	69.32	65.98	67.50			61.98
	dh (A)			70.12	71.96	65.74	67.41	01.30
	Day time Avg Leq Value	75/55/65	72.66	10.16				51.35
Aug-2023	db (A)			61.85	63.20	52.13	55.26	51.00
109	Night time Avg Leq Value	70/45/55	65.98	01.00		61.04	61.10	59.09
	db (A)		70.23	68.05	65.44	61.04		
	24 hrs. Avg Leq Value					07.05	65.89	63.98
	db (A)	- we will	73.69	72.65	69.98	67.85	00.0	
	Day time Avg Leq Value db (A)	75/55/65	10.00	-		54.23	57.46	54.21
Sep-2023	Night time Avg Leq	- vere	66.78	63.69	60.39	04.20		
	Value	70/45/55	00		-	57.50	57.99	57.14
	db (A)		64.98	63.90	61.54	57.50	-	
	24 hrs. Avg Leq Value db (A)	The second	1			62.90	64.63	61.60
	Day time Avg Leq		69.75	67.69	65.12	62.30	- Marie	
Average	Value	75/55/65						52.6
	db (A)			60.12	57.96	52.14	51.36	52.0
	Night time Avg Leq Value db (A)	70/45/55	60.22	60.12				

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

- 43, Sector-A1 Ext., Bhalla Enclave, Channi Himmat, Jammu-180 015, J&K (UT), India
- C+91-191-2465597
- info@nityalab.com www.nityalab.com
 Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 – September 2023 forAmmonia –Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

TABLE - 3

Ground Water Quality Assessment Schedule

Sr. No.	Source	Parameters	Frequency
1.	HURL Plant (Bore-well)	As per IS: 10500	Once in a Month
2.	HURL Township (Hand Pump)	As per IS: 10500	Once in a Month
3.	Chakiya Village (Hand Pump)	As per IS: 10500	Once in a Month

HURL BARAUNI, GROUND WATER QUALITY DATAAVERAGE RESULT (May 2023 to September 2023)

(Results are expressed in mg/l, unless otherwise stated)

Sr. No.	Parameters	Averag	ge Analysis Re	esults	Requirement (Acceptable)/Permissible	
		HURL Plant (Bore- well)GW-1	HURL Township (Hand Pump)GW- 2	Chakiya Village (Hand Pump)GW- 3	Limits (IS:10500:2012)	
PHYSICAL						
1.0	pH	7.14	7.24	6.92	6.5-8.5	
2.0	Temperature	26.62	28.1	26.10		
3.0	Colour	<5	<5	<5	5/15	
4.0	Odour	ND	ND	ND	Agreeable	
5.0	Taste	ND	ND	ND	Agreeable	
6.0	Turbidity (NTU)	ND	ND	ND	1/5	
7.0	Total Suspended Solids	15	24	30.75		
8.0	Total Dissolved Solids	1070	531.5	620	500/2000	
CHEMICA	L					
1.0	P-Alkalinity as (CaCO3)	ND	ND	ND		
2.0	Total Alkalinity as (CaCO3)	323.6	376.25	280	200/600	

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

9 43, Sector-A1 Ext., Bhalla Enclave, Chafini Himmat, Jammu-180 015, J&K (UT), India

NITYA LABORATORIES

+91-191-2465597

■ info@nityalab.com www.nityalab.com Annexure-1

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

Env. STATEMENT for CTO Compliance for the period May 2023 - September 2023 forAmmonia -Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

3.0	Chloride as CI	60	42.50	63.75	250/1000
4.0	Sulphate as (SO4)	21.24	24.88	63.25	200/400
5.0	Nitrate as (NO3)	0.77	0.56	1.13	45/NR
6.0	Fluoride as (F)	ND	ND	ND .	1.0/1.5
7.0	Total Hardness as (CaCO3)	310	296.25	260 .	200/600
8.0	Calcium as Ca	128.6	91.25	93.75	
9.0	Magnesium as Mg	64.86	45.20	46.80	
10.0	Sodium as Na	33.94	21.38	37.77	
11.0	Potassium as K	3.42	1.99	5.37	
12.0	Silica as SiO2	23.25	14.37	17.90	
13.0	Iron as Fe	ND	0.21	0.28	0.3/NR
HEAVY N	METALS				
1.0	Manganese as Mn	ND	ND	ND	0.1/0.3
2.0	Total Chromium as Cr	ND	ND	ND	0.05/NR
3.0	Lead as Pb	ND	ND	ND	0.01/NR
4.0	Zinc as Zn	0.37	ND	0.17	5.0/15
5.0	Cadmium as Cd	ND	ND	ND	0.003/NR
6.0	Copper as Cu	ND	ND	ND	0.05/1.5
7.0	Nickel as Ni	ND	ND	ND	0.02/NR
8.0	Arsenic as As	ND	ND	ND	0.01
9,0	Selenium as Se	ND	ND	ND	0.01/NR
OTHERS					
1.0	Oil & Grease	ND	ND	ND	0.01/0.03
2.0	Phenolic compound as C6H6OH	ND	ND	ND	0.001/0.002
3.0	Total Coliform (MPN/100 ml)	Absent	Absent	Absent	

NR= No Relaxation, *Calcium as Ca, ** Magnesium as

Nitya NITYA LABORATORIES Wark for Quality NITYA LABORATORIES P 43, Sector-A1 Ext., Bhalla Enclave, Himmat, Jammu-180 015, J&K (UT)

• 43, Sector-A1 Ext., Bhalla Enclave, Channi Himmat, Jammu-180 015, J&K (UT), India

C+91-191-2465597

info@nityalab.com & www.nityalab.com Annexure-1

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

Env. STATEMENT for CTO Compliance for the period May 2023 - September 2023 forAmmonia -Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

TABLE - 4

Surface Water Quality Assessment Schedule

r. No.	Source		
1.	Ganga River	Parameters	Frequency
2.	Bihat Village (Pond)	As per IS: 10500	Once in a Month
3.		As per IS: 10500	
0.	Baya Nallah		Once in a Month
		As per IS: 10500	Once in a Month

HURL BARAUNI, Surface Water Quality Data Average Result (May 2023 to September 2023) (Results are expressed in mg/l, unless otherwise stated)

Sr. No.	P.	Aver				
	Parameters	Ganga River Bihat Village Baya Na (Pond)		Baya Nallah	Requirement (Acceptable)/P ermissible	
PHYSICAL			(SW2)	(SW3)	Limits (IS: 10500:2012)	
1.0	pH					
2.0	Temperature	7.38	7.59	7.79	CEOG	
3.0	Colour	27.58	27.92	26.90	6.5-8.5	
4.0		<5	38.20	<5		
5.0	Turbidity (NTU)	36	39.40	<1	5/15	
	Total Suspended Solids	13.40	42.16		1/5	
6.0	Total Dissolved Solids	285		18.10		
HEMICAL		203	1060.40	255.80	500/2000	
1.0	Total Alkalinity as (CaCO3)	100 10				
2.0	Chloride as CI	163.40	334	159.80	200/600	
3.0	Sulphate as (SO4)	34.60	298	- 33.20	250/1000	
4.0	Nitrate as (NO3)	17.38	28.88	14.24	200/400	
5.0	Fluoride as (F)	1.27	0.61	0.35	45/NR	
6.0		ND .	ND	ND .	1.0/1.5	
	Total Hardness as (CaCO3)	175.80	254.20	162.60	200/600	

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

1 +91-9013591021, +91-9013552273

labsnitya@gmail.com

www.nityalab.com

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB Work for Quality

NITYA LABORATORIES

- 43, Sector-A1 Ext., Bhalla Enclave, Channi Himmat, Jammu-180 015, J&K (UT), India
- +91-191-2465597
- info@nityalab.com www.nityalab.com

Env. STATEMENT for CTO Compliance for the period May 2023 - September 2023 forAmmonia -- Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

TOTALI	monia –Urea (2200 MTPD & 38	86.6	85.40	93.80	
7.0	Calcium as Ca		43.47	5.92	•
8.0	Magnesium as Mg	20.42		4.34	
	Dissolved Oxygen	4.86	2.78	42	
9.0		23.20	139.60		
10.0	COD	4.66	31.40	8.80	
11.0	BOD (3 days at 27°C)	34.58	37.60	28.30	
12.0	Sodium as Na	3.08	2.88	1.89	
13.0	Potassium as K	3.00			
HEAVY MET	ALS		ND	ND	0.3/NR
1.0	Iron as Fe	0.14		ND	0.1/0.3
	Manganese as Mn	ND	ND	ND	0.05/NR
2.0	Total Chromium as Cr	ND	ND		0.01/NR
3.0		ND	ND	ND	
4.0	Lead as Pb	0.35	0.28	0.31	5.0/15
5.0	Zinc as Zn	ND	ND	ND	0.003/NR
6.0	Cadmium as Cd		ND	ND	0.05/1.5
7.0	Copper as Cu	ND		ND	0.02/NR
8.0	Nickel as Ni	ND	ND	ND	0.01
	Arsenic as As	ND	ND		0.01/NR
9.0		ND	ND	ND	0.0111415
10.0	Selenium as Se				
OTHERS		ND	ND	ND	0.01/0.03
1.0	Oil & Grease		ND	ND	0.001/0.002
2.0	Phenolic compound as C6H6OH		836	1156	
3.0	Total Coliform (MPN/100 ml) No Relaxation, *Calcium as Ca, ** Ma	394			

NR= No Relaxation, *Calcium as Ca, ** Magnesium as Mg

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA +91-9013591021, +91-9013552273

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

NITYA LABORATORIES

- 43, Sector-A1 Ext., Bhalla Enclave, Channi Himmat, Jammu-180 015, J&K (UT), India
- U+91-191-2465597
- info@nityalab.com www.nityalab.com
 Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 – September 2023 forAmmonia –Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

TABLE - 5

Flue Gas Monitoring Assessment Schedule

Sr. No.	Source	Parameters	Frequency	
1.	Primary Reformer	SPM, SOx, NOx & CO	Twice in a Month	
2.	Prill Tower	SPM & Ammonia	Twice in a Month	
3.	HRSG-1	SPM, SOx, NOx & CO	Twice in a Month	
4.	HRSG-2	SPM, SOx, NOx & CO	Twice in a Month	

HURL BARAUNI, Flue Gas Monitoring Data Average Result (May 2023 to September 2023)

(Results are expressed in mg/l, unless otherwise stated)

Month	Parameters		NAAQS	Primary Reformer	HRSG-1	HRSG-2
			Standards			711100-2
	PM10	mg/Nm³		6.4	ND (DL-5)	ND (DL-5)
May	NOx			58	80	93
2023	SO ₂			ND (DL-1)	ND (DL-1)	ND (DL-1)
	CO			9	22	26
	PM10	mg/Nm ³		5.8	ND (DL-5)	ND (DL-5)
June 2023	NO _x			298	88	115
Julie 2023	SO ₂			ND (DL-1)	3	9
	CO			212	9	12
	PM10	mg/Nm³ -		ND (DL-5)	ND (DL-5)	ND (DL-5)
July	NO _x		-	61	85	97
2023	SO ₂			ND (DL-1)	ND (DL-1)	ND (DL-1)
	CO			7	29	23
Aug	PM10			ND (DL-5)	ND (DL-5)	ND (DL-5)
	NOx	mg/Nm ³		73	85	88
2023	SO ₂			3	3	5
	co			ND (DL-1)	33	030 520

CORPORATE OFFICE & CENTRAL LABORATORIES :-

PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLABHGARH, FARIDABAD - 121004, HARYANA, INDIA

BUILDING & ROAD, MATERIAL, SOIL, ENVIRONMENTAL & CALIBRATION TESTING LAB

Channi Himmat- 180015, Jammu (J&K)

E +91-191-2465597

info@nityalab.com & www.nityalab.com Annexure-1

Env. STATEMENT for CTO Compliance for the period May 2023 - September 2023

forAmmonia - Urea (2200 MTPD & 3850 MTPD) plant of HURL at Barauni

	PM10		ND (DL-5)	ND (DL-5)	ND (DL-5)
Sep	NOx		68	101	, 99
2023	SO ₂	mg/Nm ³	3	6	9
	co		ND (DL-1)	9	10
	PM10		6.1	. ND (DL-5)	ND (DL-5)
	NOx	1	114.50	89.40	98.40
Average	SO ₂	mg/Nm ³	3.0	5.74	7.66
	co		9.50	20.4	14.60

HURL BARAUNI, Flue Gas Monitoring Data Average Result (May 2023 to September 2023) (Results are expressed in mg/l, unless otherwise stated)

Month	D		NAAQS		
Wonth	Parai	neters	Standards	Prill Tower	
May 2023	PM10			45	
viay 2025	NH ₃	mg/Nm ³		78	
0000	PM10			62	
lune 2023	NH ₃	mg/Nm³			
L.L. 2022	PM10	mg/Nm ⁰		49,	
July 2023	NH ₃			86	
A 2000	PM10	mg/Nm ⁸		46	
Aug 2023	NH			81	
	PM10			42	
Sep 2023	NH ₃	mg/Nm	-	74	
Average	PM10			48.48	
	NH ₃	mg/Nm ²		79.75	

CORPORATE OFFICE & CENTRAL LABORATORY

9 PLOT NO. 118, CHURCH ROAD, BEHIND KAUSIK VATIKA, BHAGAT SINGH COLONY, BALLASHGARH, FARIDABAD - 121004, HARYANA, INDIA

बेगूसराय वन प्रमंडल, बेगूसराय अक्टूबर, 23 के आधार पर उत्तरजीविता प्रतिवेदन HURL योजना

			T	HU	RL यो	नना				
3FO	पमंडल का नाम 2	जिला का नाम	योजना का नाम / मिटि का नाम		वृक्षारोपण वर्ष	शंत्रफल (हेंo में) लम्बाई (किंoमीo में)	रोपित पाँचों की संख्या	उत्तरजीविता पौधों की संख्या (अक्टूबर, 2023)	उत्तजीविता प्रतिशत (अक्टूबर, 2023)	अभियुक्ति
HU	RL योज		4	5	6	7	8	9		
,		and the second							10	11
	2 बेगूसराय बेगूसराय			जानीपुर ढाला से साहेबपुरकमाल तक (डाउन साईड)		7 5000				
2			रेलवे साहेबपुरकमाल से चौकी ढाला	- 1		5000	4654	93.08		
4		बेगूसराय	ाराय HURL योजना	(खाउन साईट) रेलवे चौकी ढ़ाला से उमेश नगर (दोनो साईड)	2022-23	4	5500	4980	00.44	
3								4700	90.55	
+		4				4	9500	9082	95,60	
			रेलवे शाहपुर ढाला से सुरदासा ढला (अप साईड)					72.00		
						5	5000	4672	93.44	
		HU	RL योजना	का कुल ::-		20	25000	22200		
						200	23000	23388	93.55	

बेगूसराय वन प्रमंडल, बेगूसराय।