COMPLIANCE REPORT

(MoEF & CC File No. J-11011/166/2016-IA II (I) dated 31/07/2017) For the period

April 2020 to September 2020

Submitted

TO

MoEF & CC, Regional Office (ECZ), Lucknow

AMMONIA UREA FERTILIZER PLANT

(2200MTPD Ammonia & 3850MTPD Urea)

GORAKHPUR

NOVEMBER 2020

हिंदुस्तान उर्वरक एवं रसायन लिमिटेड HINDUSTAN URVARAK & RASAYAN LTD. (A joint Venture of NTPC, CIL, IOCL, FCIL & HFCL)

HINDUSTAN URVARAK & RASAYAN LIMITED

(A JV of NTPC, CIL, IOCL, FCIL & HFCL)

Admin.Building HURL Campus, Fertilizer Gorakhpur-273007

Ref. No.: HURL/GKP/20-21/

Date: 05/12/2020

To,

Dr. Satya

Scientist E

Regional Officer (RO)

(Central Zone CZ)

Kendriya Bhavan,5th Floor

Sector-H, Aliganj, Lucknow-226020 (U.P.)

Subject: Ammonia (2200 MTPD) Urea (3850 MTPD) Fertilizer Project at Gorakhpur, Uttar Pradesh of M/s Hindustan Urvarak & Rasayan Limited (HURL)-Compliance Report for April 2020 to September 2020.

Ref:(i) MoEF&CC, Environmental Clearance Letter No. J-11011/166/2016-IA II (I) dated 31.07.2017.

Dear Sir,

With reference to the subject as mentioned above, please find attached herewith the compliance report for the period April 2020 to September 2020.

Yours faithfully

(Subodh Dixit)

Sr. Manager

Hindustan Urvarak & Rasayan Ltd. (HURL) Admin Building, Fertilizer Township Gorakhpur PO-Fertilizer Factory, Dist. - Gorakhpur-273007

Telefax - 0551-2261177

S.NO.	CONTENT	PAGE NO
1	COMPLIANCE OF EC CONDITIONS FOR THE PERIOD APRIL 2020 TO SEPTEMBER 2020	1
2	ANNEXURE-1	10
3	HURL GORAKHPUR AIR QUALITY DATA APRIL 2020 TO SEPTEMBER 2020	11
4	HURL GORAKHPUR AIR QUALITY DATA APRIL 2020 TO SEPTEMBER 2020	12
5	HURL GORAKHPUR GROUND WATER QUALITY DATA APRIL 2020 TO SEPTEMBER 2020	13
6	HURL GORAKHPUR SURFACE WATER QUALITY DATA APRIL 2020 TO SEPTEMBER 2020	14
7	HURL GORAKHPUR NOISE QUALITY DATA APRIL 2020 TO SEPTEMBER 2020	15
8	ANNEXURE II RAINWATER HARVESTING	16
9	ANNEXURE III GREEN BELT DEVELOPMENT & PLANTATION OF TREES	18
10	ANNEXURE IV MONITORING REPORT	20
11	ANNEXURE V AGREEMENTS & NO OBJECTION CERTIFICATES	24

COMPLIANCE OF EC CONDITIONS FOR THE PERIOD April 2020 to September 2020

Sl. No.	EC Conditions	Compliance status
Α	SPECIFIC CONDITIONS	
	Emissions-limits for the pollutants from the	The electricity is being supplied by
	Diesel Generator Sets and the stack height	UPPCL (Uttar Pradesh Power
	shall be in conformity with the extant	Corporation Limited) for construction
	statutory regulations and/or the CPCB	purpose in the Ammonia- Urea
	guidelines in this regard.	Fertilizer Project at HURL Gorakhpur.
		The statutory emission norms shall be
		met by using New Generation DG sets
		during operating phase of the Plant.
		Stacks are being constructed meeting
		statutory regulation & guidelines.
	To control source emissions, scrubber and/or	This has been addressed in the
	other suitable pollution control device shall be	Feasibility Report of the Project and
	installed to meet the prescribed Particulate	shall be complied with in the Plant
	Matter emission norms of 50 mg/Nm3, and	during operation.
	also the NAAQS.	
	Fresh water requirement shall not exceed	Ground water withdrawal is envisaged
	5.36 cum/ton of Urea production. Fresh water	during construction phase through
	for plant operation shall be sourced only from	existing tube-wells. Fresh water
	Chilwa Taal. During construction phase,	Consumption norms shall be met
	ground water may be used after prior	during "Normal Plant operation"
	permission in this regard from the concerned	
	regulatory authority.	
	Plantation shall be carried out around the	The plantation shall be carried out in
	Chilwa Taal.	consultation with the district forest
		department by selecting the local Plant
		species which flourish in the area's
		climate & supports maximum bio-
		diversity in the environment.
	As already committed by the project	The Project is based on ZLD concept

adopting 3R's and there will be no proponent, no waste/treated water shall be discharged outside to ensure ZLD. Water discharge outside the project boundary. consumption shall be reduced by adopting 3 R's (Reduce, Reuse & Recycle) concept in the process. The conditions for provision of Green Industry shall develop Greenbelt with 10m Belt will be complied with and will be in width along the plant periphery with three place by the time of Commissioning of layers of perennial native plant species. 33% the Plant. Plantation will be started from the start of early next year along of the total project cover area i.e. nearly 130 acres out of 350 acres of area of the Project, the eastern & northern plant boundary of approximate 5000 trees. shall be developed as green area with plantation of native perennial trees. Water of chilwa taal shall be used A plan shall be prepared and implemented for during operation of the Plant. Capacity enhancement of taal shall be taken up the conservation of Chilwa Taal giving special emphasis on protection of conservation of its minimum submergence with natural recharge channels upstream areas. The highest pond level is being finalized through consultant. All the commitments made during Public All the commitments made during Hearing/Public Consultation meeting held on Public Hearing/Public Consultation 24th April, 2017 shall be satisfactorily meeting held on 24th April, 2017 shall implemented and adequate budget provision be satisfactorily implemented and should be made accordingly. adequate budget provision will be made in the Project accordingly. At least 2.5% of the total cost of the project ESC program will be carried out and shall be earmarked towards the Enterprise adequate budget will be provided in the Social Commitment (ESC) based on local Project. Detailed action plan along with needs and action plan with financial and budget will be provided once the plant physical breakup/details shall be prepared becomes operational. and submitted to the Ministry's Regional Office at Lucknow. Implementation of such program shall be ensured accordingly in a time bound manner within 5 years. The ECS

plan w	ill include following activities:	
b.	Up-gradation of existing school with	
	modern education facilities	
c.	Planting of 5000 trees per year in 5	
	year in nearby villages in consultation	
	with the local / forest dept. Survival	
	rate of the plants shall be reported to	
	RO, MoEF&CC in 6monthly	
	compliance report. Conservation	
	plant for shall be continue with.	
d.	Safe drinking water facility with RO	
	plant in villages located within 3 Km	
	radius of the plant with maintenance	
	cost.	
A regu	lar environment manager having post	The EC conditions relating to
gradua	te qualification in environmental	establishment of Environmental Cell
science	es/environmental engineering to be	will be complied during operation of
appoin	ted for looking after the environmental	the Plant.
manag	ement activities of the proposed plant.	
Contin	uous online (24 X 7) monitoring system	This will be implemented during
for em	issions and effluent generation shall be	operation phase.
installe	ed for flow/discharge measurement and	
the po	llutants concentration within the plant.	
Data sl	nall be uploaded on company's website	
	ovided to the respective RO of MoEF&	
	CB and SPCB.	
	nit shall make the arrangement for	This has been addressed in the
•	tion of possible fire hazards during	Feasibility Report and RRA conducted
	acturing process in material handling.	for the Project and recommendation
	hting system shall be as per the norms.	shall be complied with in the Plant
	nmonia storage shall be limited to 2	during operation.
days.		
Occupa		Regular health check-up/monitoring of
worker	s shall be done on a regular basis and	the construction labourers is being

records maintained as per the Factories Act.	done and records are being maintained
	for the same. We have also started with
	covid-19 related safety & health
	measures by adopting sanitization;
	thermal scanning guidelines for
	workers, compulsory PPE like face
	masks etc. All the construction workers
	are ensured to be equipped with PPEs
	such as helmets, hand gloves, boots
	etc. before entering into construction
	site. The same shall continue during
	plant operation phase.
Storage of hazardous raw material shall not	The raw material required for
exceed more than 7 days.	construction activities are being stored
	in the designated place isolated from
	the construction area.
	The storage of raw materials has been
	addressed in the Feasibility Report and
	EIA report of the Project and shall be
	complied with in the plant during
	operation.
Urea dust shall be controlled by prescribed	This has been addressed in the
standard technique.	Feasibility Report and EMP of the
	Project and shall be complied with in
	the plant during operation.
GENERAL CONDITIONS	
The Project authorities shall strictly adhere to	HURL shall strictly comply with the
the stipulations made by the State Pollution	conditions laid by UPPCB, UP State
Control Board (SPCB), State Government and	Government and any other statutory
any other statutory authority.	authority during construction and
	operation phase of the plant.
	Storage of hazardous raw material shall not exceed more than 7 days. Urea dust shall be controlled by prescribed standard technique. GENERAL CONDITIONS The Project authorities shall strictly adhere to the stipulations made by the State Pollution Control Board (SPCB), State Government and

ii)	No further expansion or modifications in the	This condition will be complied with as
	Plant shall be carried out without prior	stated.
	approval of the MoEF&CC. In case of	
	deviations or alterations in the project	
	proposal from those submitted to MoEF&CC	
	for clearance, a fresh reference shall be made	
	to the Ministry to assess the adequacy of	
	conditions imposed and to add additional	
	environmental protection measures required,	
	if any.	
iii)	The locations of ambient air quality	The locations of ambient air quality
	monitoring stations shall be decided in	monitoring have been decided in
	consultation with the State Pollution Control	consultation with the UP State Pollution
	Board (SPCB) and it shall be ensured that at	Control Board (UPPCB) and HURL
	least one stations is installed in the upwind	officials for monitoring of Air Quality
	and downwind direction as well as. Where	during construction phase. 6Nos. of
	maximum ground level concentrations are	AAQMS have been installed in the
	anticipated.	project area out of which two stations
		are selected in up-wind and two
		stations are selected in down-wind
		directions.
iv)	The National Ambient Air Quality Emission	All efforts are being made to contain
	Standards issued by the Ministry vide G.S.R.	the fugitive dust emission within the
	No. 826(E) dated is November, 2009 shall be	standard limits at construction site. This
	followed.	will also be complied with during
		operation phase.
v)	The overall noise levels in and around the	All efforts are being made to contain
	plant area shall be kept well within the	the noise levels within the standard
	standards by providing noise control	limits at construction site round the
	measures including acoustic hoods, silencers,	clock. All construction equipment's
	enclosures etc. on all sources of noise	deployed at site are ensured to have
1		
	generation. The ambient noise levels shall	acoustic hoods and
	generation. The ambient noise levels shall conform to the standards prescribed under	acoustic hoods and silencers/enclosures on sources of

	1989 viz. 75 dBA (day time) and 70 dBA (night	workers at site are equipped with ear
	time).	muffs.
		This condition will also be complied
		with during operation phase of the
		plant.
vi)	The Company shall harvest rainwater from	This condition will be complied with as
	the roof tops of the buildings and storm water	given in Annexure II while designing the
	drains to recharge the ground water and use	buildings.
	the same water for the process activities of	
	the project to conserve fresh water.	
vii)	Training shall be imparted to all employees on	This condition will be complied with
	safety and health aspects of chemicals	during operation phase of the plant.
	handling. Pre-employment and routine	
	periodical medical examinations for all	
	employees shall be undertaken on regular	
	basis. Training to all employees on handling of	
	chemicals shall be imparted.	
viii)	The company shall comply with all the	This condition will be complied in
	environmental protection measures and	totality as stated.
	safeguards proposed in the documents	
	submitted to the Ministry. All the	
	recommendations made in the EIA/EMP in	
	respect of environmental management, risk	
	mitigation measures and public hearing be	
	implemented.	
ix)	The company shall undertake all relevant	Once the plant becomes operational,
	measures for improving the socio-economic	CSR activities will be undertaken by
	conditions of the surrounding area. CSR	involving local villages and
	activities shall be undertaken by involving	administration as per rules and
	local villages and administration.	government guidelines.
x)	The company shall undertake all eco-	Once the plant becomes operational,
	developmental measures including	CSR activities will be undertaken by
	community welfare measures for overall	involving local villages and
	improvement of the environment.	administration as per rules and

		government guidelines.
xi)	A separate Environmental Management Cell	This has been addressed in the
	equipped with full-fledged laboratory facilities	Feasibility Report of the Project and
	shall be set up to carry out the Environmental	shall be complied with in the Plant
	Management and Monitoring functions.	during operation.
xii)	The company shall earmark sufficient funds	This stated condition will be complied
	towards capital cost and recurring cost per	by HURL.
	annum to implement the conditions	
	stipulated by the Ministry of Environment,	
	Forest and Climate change as well as the State	
	Government along with the implementation	
	schedule for all the conditions stipulated	
	herein. The funds so earmarked for	
	environment management, pollution control	
	measures shall not be diverted for any other	
	purpose. (xiii) A copy of the clearance letter	
	shall be sent by the project proponent to	
	concerned Panchayat, ZilaParisad/Municipal	
	Corporation, Urban local Body and the local	
	NGO, if any, from whom suggestions,	
	representations, if any, were received while	
	processing the proposal.	
xiii)	A copy of the clearance letter shall be sent by	The copy of Environment Clearance
	the project proponent to concerned	letter issued by MoEF&CC have been
	Panchayat, ZilaParisad /Municipal	uploaded to company website
	Corporation, Urban local Body and the local	www.hurl.net.in and also advertised in
	NGO, if any, from whom suggestions,	the local editions of English and Hindi
	representations, if any, were received while	news papers.
	processing the proposal.	
xiv)	The project proponent shall also submit six	Presently in construction phase,
	monthly reports on the status of compliance	monitoring function of specified
	of the stipulated Environmental Clearance	parameters are being done by
	conditions including results of monitored data	MoEF&CC recognized & NABL

(both in hard copies as well as by mail) to the respective Regional Office of MoEF& CC, the respective Zonal Office of Environmental Clearance and six-monthly compliance status reports shall be posted on the website of the company.

The environmental statement for each financial year ending 31st March in Form-V as is mandated shall be submitted to the

xv)

xvi)

accredited environmental laboratory of the HUBERT Enviro, Chennai which is hired as a third party by Projects and Development India Ltd (PDIL), Noida.

concerned State Pollution Control Board as prescribed under the Environment 1986, (Protection) Rules, as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental conditions and shall also be sent to the respective Regional Offices of MoEF& CC bymail.

The Environment Statement is submitted in each financial year ending 31st March in From-V.

The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be seen at Website of the Ministry at http://moef.nic.in. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the concerned Regional Office of the Ministry.

Environment Clearance granted by Ministry vide MoEF& CC letter no J-11011/166/2016-IA II(I)DATED 31/07/2017 has already been updated on Company website www.hurl.net.in. The same was also advertised on 16.09.2017 on page .13 in Hindustan in (Hindi) and page 09 in Hindustan Times in (English) published from Gorakhpur, UP herewith and submitted as Annexure-VΙ along with the Compliance Report.

xvii)	The project authorities shall inform the This shall be complied with and
	Regional Office as well as the Ministry, the requisite information will be furnished.
	date of financial closure and final approval of
	the project by the concerned authorities and
	the date of start of the project.

(Subodh Dixit)
Sr. Manager
Hindustan Urvarak & Rasayan Ltd. (HURL)
Admin Building, Fertilizer Township Gorakhpur
PO-Fertilizer Factory, Dist. - Gorakhpur-273007
Telefax – 0551-2261177

Annexure-1

Compliance of EC conditions for the period April 2020 - September 2020 for proposed Ammonia - Urea (2200MTPD & 3850 MTPD) plants of HURL at Gorakhpur

ANNEXURE- I

This Compliance Report is the fulfillments of the condition of the Environmental Clearance (EC) vide File No. EC [IA/UP/IND2/54269/2016, J – 11011/166/2016- IA II (I)] for the period of April 2020 to September 2020. This report has been prepared by Projects and Development India Limited (PDIL) by collecting respective samples in consultation with the State Pollution Control Board (SPCB) officials and Hindustan Urvarak and Rasayan Limited (HURL) officials. During the above mentioned period the analysis of the environmental parameters has been conducted by the NABL accredited Laboratory at PDIL, Noida & HUBERT Enviro, Chennai and under the strict supervision of the Government Analyst.

The proposed project is located at Gorakhpur with the capacity of 2200MTPD Ammonia and 3850MTPD Urea in the District Gorakhpur in the state of Uttar Pradesh. The area falls in the agricultural belt of the Uttar Pradesh.

The compliance report fulfills the 15 Nos. of Specific Conditions and 17 Nos. of General Conditions led by Ministry of Environment, Forests and Climate Change. Rainwater Harvesting and Ground Water charging has been proposed as per Standard Guidelines:

- Guidelines on Artificial Recharge of Water, Central Water Ground Board, Ministry of Water Resources, Gol (2000)
- Manual on Artificial Recharge of Ground Water, Central Water Ground Board, Ministry of Water Resources, Gol (2007)
- Rain Water Harvesting and Conservation: Manual, Consultancy Services Organization, CPWD, Gol (2002)

The green belt proposed by MoEF&CC is under review for selection of suitable plant species in consultation with local experts of the area.

The Environmental Monitoring report of 6 months w.r.t Air, Water and Noise have been presented separately with the average values. The environmental conditions and the compliance have been found normal as per the Standards. The Air Quality results have been presented through a self explanatory table with the NAAQ Standards w.r.t the parameter $PM_{10},\,PM_{2.5},\,NO_X,\,SO_2,\,CO$ & NH_3 . Three sets each of Ground Water Samples and Surface Water Samples have been collected, analyzed in a self explanatory table and compared with Drinking Water Standards (IS:10500:2012). The analyzes consists of eight nos. of physical parameters, thirteen nos. of chemical parameters, nine nos. of Heavy metals and three nos. of miscellaneous parameters. Noise Quality has also been measured at six different locations in the periphery of the project area. The results have been presented through self explanatory table consisting of the Standard NAAQS w.r.t. noise.

The above report with respect to Air, Water and Noise represents the average values of different sampling stations collected at different time during the study period of April 2020 to September 2020.

व्याग्यमा

1 of 5

HURL Gorakhpur Air Quality Data April-20-September-20

(µg/m²) = PM, S, PM ₂ , SO, NO, NH ₃ (ppm) = NMHC, MHC, (mg/m²) = CO, VOC April – The Environmental Monitoring was suspended due to Nationwide Lockdown (Corona virus Parts emic situation)	MONTH Parameters NAAOS MURIX Plant HURIX Admin Buldining (SAZ) Cluster B. 92.83 Cluster B. 92.83 Cluster B. 92.83 Cluster B. 92.83 Cluster B. 92.84 Cluster B.	(22001117)	G 3030 W	r o) plati	LS OF HOR	L at Gorakh	ou .		A	NNEXURE-
MONTH	MONTH									**
MONTH	MONTH			HUI	RL GOR	AKHPUR,	AIR QUALITY	Y DATA - 202	0	
MAY	MAY PMs 100 92.33 92.50 88.80 84.00 89.20 91.00 Nov. 80 50.5 Sol. 1 52.2 Sol. 8.0 Sol. 50.5 Sol. 1 Sol.	MONTH	Parameters	NAAQS	HURL Plan	HURL Admin	HURL residence	HURL residence	Karmaha	Bargadwa Village (SA6)
SO ₂ 80 12.3 12.9 11.2 110.0 13.3 14.3 NO ₂ 80 2 1 0 20.9 18.9 14.3 19.1 16.5 CO 0.2 0.55 0.64 0.53 0.51 0.50 0.42 NiHs 400 BDL BDL BDL BDL BDL BDL BDL NMHC - 4.34 2.75 5.42 3.00 4.45 3.11 MHC - 5.07 3.60 2.61 4.45 5.60 4.95 VOC - 5.72 2.71 4.51 2.59 3.48 4.09 JUNE PM ₁₈ 100 112.00 110.80 106.50 105.30 105.70 PM ₂₉ 50 63.3 65.3 61.8 56.8 64.1 62.5 SO ₂ 80 21.0 22.8 20.7 19.4 18.4 21.4 NO ₄ 80 30.7 30.8 28.2 26.1 22.9 28.2 CO 0.2 3.34 2.45 3.60 2.17 3.59 2.54 NiH 400 BDL BDL BDL BDL BDL BDL WOC - 5.57 3.82 5.30 3.70 6.05 5.59 JULY PM ₁₈ 100 86.70 39.20 86.80 86.20 69.00 64.30 NH ₂ 80 50.1 55.8 51.5 50.5 49.5 54.3 SO ₂ 80 18.9 19.9 16.5 18.5 18.5 20.1 WOC - 6.55 3.82 27.4 25.5 21.8 21.8 20.1 NO ₄ 80 28.2 27.4 25.5 21.8 21.8 20.1 NO ₄ 80 28.2 27.4 25.5 21.8 21.8 20.1 NO ₄ 80 28.2 27.4 25.5 21.8 21.8 20.1 NO ₄ 80 28.2 27.4 25.5 21.8 21.8 20.1 NO ₄ 80 28.2 27.4 25.5 21.8 21.8 20.1 NO ₄ 80 28.2 27.4 25.5 21.8 21.8 20.1 NO ₄ 80 28.2 27.4 25.5 21.8 21.8 20.1 NO ₄ 80 28.2 27.4 25.5 21.8 21.8 20.1 NO ₄ 80 28.2 27.4 25.5 21.8 21.8 20.1 NO ₄ 80 28.2 27.4 25.5 21.8 21.8 20.1 NO ₇ 80 28.0 28.6 3.9 3.4 3.6 3.5 5.4 4.5 NO ₇ 80 28.0 27.8 3.3 4.8 4.5 5.9 NO ₈ 80 18.4 18.8 19.9 18.5 18.5 18.5 18.2 OC 0.2 2.5 18.8 29.1 29.9 28.4 30.1 NO ₇ 80 28.0 28.6 38.6 38.3 5.3 5.3 4.8 NO ₇ 80 28.0 28.6 27.8 28.9 28.4 30.1 28.9 OC 0.2 2.0 2.0 2.3 1.9 2.49 2.41 2.43 NO ₇ 80 28.0 28.9 28.5	SO ₂ 80 12.3 12.9 11.2 10.0 13.3 14.3 NO _X 80 24.0 20.9 18.9 14.3 19.1 16.5 CO 0.2 0.55 0.64 0.53 0.51 0.50 0.42 NHH 16.5 0.50 0.64 0.53 0.51 0.50 0.44 0.55 0.50 0.64 0.55 0.50 0.64 0.55 0.50 0.64 0.55 0.50 0.65 0.55 0.50 0.65 0.55 0.50 0.65 0.55 0.50 0.65 0.55 0.55 0.55 0.64 0.55 0.5	MAY		100	92.33	92.50	88.80	84.00	89.20	91.00
NO ₂	NO _X									
CO	CO									
NMHC	NAHC -		CO	02	0.55	0.64	0.53	0.51	0.50	0.42
MHC	MHC 									
JUNE PM:s 100 11200 11080 10460 100.80 105.30 105.70 PM:s 60 63.3 65.3 65.3 61.8 56.8 64.1 62.5 NO _X 80 21.0 22.8 20.7 194 184 21.4 NO _X 80 30.7 30.8 28.2 26.1 25.9 26.2 CO 02 3.44 2.45 3.60 21.7 3.59 2.54 NH ₁ 400 BDL BDL BDL BDL BDL BDL BDL BDL NHHC - 6.17 4.88 4.01 4.56 6.67 6.89 VOC - 6.55 3.82 5.30 3.70 6.05 5.99 JULY PM:s 100 86.70 93.20 86.80 86.20 89.00 94.30 NO _X 80 18.9 19.9 18.5 18.5 19.2 20.1 NMHC - 5.16 14 4.00 3.49 3.65 5.24 5.00 NO _X 80 28.2 27.4 25.5 21.8 21.8 25.5 CO 02 2.59 1.81 2.92 1.75 2.57 2.40 NMHC - 5.61 4.00 3.49 3.65 3.63 5.14 4.07 MHC - 5.61 4.00 3.49 3.65 5.24 5.99 AUGUST PM:s 60 47.0 51.3 47.3 48.5 48.6 48.6 49.7 99.8 10.0 87.70 98.50 88.25 86.70 88.10 88.0 98.2 89.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0	VCC 5.72 2.71 4.51 2.59 3.48 4.99					3.80		4.45		
PM33 60 63.3 65.3 61.8 56.8 64.1 62.5	PM _{3,2} 60 63.3 65.3 61.8 58.8 64.1 62.5		VOC	-	5.72	2.71	4.51	2.59	- 3,48	4.09
SO2	SO1	JUNE								
NOx 80 30,7 30,8 28,2 26,1 25,9 28,2	NO ₁ 80 30.7 30.8 28.2 26.1 25.9 26.2					05.3 22.8				
CO 02 3.34 2.45 3.60 2.17 3.59 2.54 NH, 400 BDL BD	CO 02 3.34 2.45 3.60 2.17 3.59 2.54 NH1 400 BDL BDL BDL BDL BDL NMHC - 5.19 5.53 4.24 4.33 5.94 5.10 NMHC - 6.17 4.68 4.01 4.56 6.67 5.89 VCC - 6.55 3.82 5.30 3.70 6.05 5.59 JULY PM₁9 100 86.70 93.20 86.80 86.20 86.90 69.20 86.90 PM₂2 80 50.1 55.8 51.5 50.5 49.5 54.3 SO₂ 80 18.9 19.9 18.5 18.5 18.5 20.1 NO₂ 80 28.2 27.4 28.5 21.8 22.1 RO₂ 2.59 1.81 2.82 1.76 2.57 2.40 NHHC - 4.24 4.71 3.65 3.63 5.14 4.07 NHHC - 5.61 4.00 3.49 3.65 5.24 5.09 VCC - 5.54 3.37 4.32 3.33 4.86 4.85 SO₂ 80 18.4 18.8 19.7 18.7 2.07 19.0 NO₃ 80 28.0 27.8 28.9 28.4 30.1 28.9 FM₂2 60 47.0 51.3 47.3 48.5 48.5 49.7 NO₃ 80 28.0 27.8 28.9 28.4 30.1 28.9 NHH 400 BDL				30.7		28.2	26.1	25.9	28.2
NMHC	NMHC	100	CO	02	3.34	2.45	3.60	2.17	3.59	2.54
MHC	MHC									
VOC	JULY									
PM ₁₈ 60 50.1 55.8 51.5 50.5 49.5 54.3 S0.2 80 18.9 19.9 18.5 18.5 18.2 20.1 NO₂ 80 28.2 27.4 25.5 21.8 21.8 25.5 CO 02 2.59 1.81 2.82 17.5 2.57 2.40 NH ₃ 400 BDL	PM ₁₃ 60 50,1 55,8 51,5 50,5 49,5 54,3 S0, 80 18.9 19.9 13.5 18.5 18.2 20.1 NO _X 80 28.2 27.4 28.5 21.8 21.6 25.5 CO 02 2.59 1.81 2.62 1,75 2.57 2.40 NN _H 400 BDL BDL BDL BDL BDL BDL BDL BDL BDL SDL SDL SDL SDL SDL SDL SDL SDL SDL S		voc		6.55	3.82	5.30	3.70	6.05	5.59
SO ₂ 80 18.9 19.9 18.5 18.5 18.2 20.1	SO ₂ 80	JULY								94.30
NO ₃ 80 28.2 27.4 25.5 21.8 21.8 25.5	NO _x 80 28.2 27.4 25.5 21.8 21.8 25.5									20.1
NHs, 400 BDL BDL BDL BDL BDL BDL BDL BDL NMHC - 4.24 4.71 3.65 3.63 5.14 4.07 MHC - 5.61 4.00 3.49 3.65 5.24 5.09 VOC - 5.54 3.37 4.32 3.33 4.86 4.85 VOC - 5.54 3.37 4.32 3.33 4.86 4.85 VOC - 5.54 5.36 5.24 5.09 VOC - 5.54 5.36 5.26 5.24 5.09 VOC - 5.54 5.36 5.26 5.26 5.24 5.09 VOC - 5.54 5.36 5.26 5.26 5.24 5.09 VOC - 5.54 5.36 5.26 5.26 5.24 5.09 VOC - 4.64 5.29 6.17 4.60 5.93 5.34 5.40 VOC - 4.64 3.59 5.34 6.49 5.65 6.61 6.30 VOC - 4.64 3.59 5.34 6.49 5.65 6.61 6.30 VOC - 4.64 3.59 5.34 6.49 5.65 6.61 6.30 VOC - 4.64 5.36 5.39 5.34 6.49 5.65 6.61 6.30 VOC - 4.64 5.36 5.39 5.34 6.49 5.65 6.61 6.30 VOC - 4.64 5.36 5.39 5.34 6.49 5.65 6.61 6.30 VOC - 4.64 5.36 5.19 5.35 5.31 5.48 VOC - 5.21 6.09 4.71 5.87 5.35 5.31 5.48 VOC - 5.21 6.09 5.25 90.13 87.38 86.88 99.13 85.13 VOC - 4.64 5.36 5.19 5.35 5.31 5.48 VOC - 5.21 6.09 5.25 90.13 87.38 68.88 99.13 85.13 VOC - 5.21 6.09 5.25 90.13 87.38 68.88 99.13 85.13 VOC - 5.21 6.09 5.25 90.13 87.38 68.88 99.13 85.13 VOC - 5.21 6.09 5.25 90.13 87.38 68.88 99.13 85.13 VOC - 5.21 6.09 5.25 90.13 87.38 68.88 99.13 85.13 VOC - 5.75 8.00 VOC - 5.75 8.60 VOC -	NHs 400 BDL				28.2				21.8	25.5
NMHC	NMHC									
MHC	MHC	NOx 80 28.2 27.4 25.5 21.8 21.8 25.5 CO 02 2.59 1.81 2.82 1.75 2.57 2.40 NH ₃ 400 BDL MDL SDL SDL								
AUGUST PM _{1,8} 100 87.70 85.60 88.25 86.70 88.10 88.80 79.25 80 17.0 81.0 18.8 10 19.7 18.7 20.7 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	AUGUST PM1:s									
PM ₁₅ 60 47.0 51.3 47.3 48.5 48.5 49.7 50.2 80 18.4 18.8 19.7 18.7 20.7 19.0 No. 2 80 28.0 27.8 28.9 28.4 30.1 28.9 CO 02 2.00 2.33 1.98 2.49 2.41 2.43 NH ₃ 400 BDL	PM ₁₃ 50 47.0 51.3 47.3 48.5 48.5 49.7 SO ₂ 80 18.4 18.8 19.7 18.7 20.7 19.0 NO _x 80 28.0 27.8 28.9 28.4 30.1 28.9 CO 02 2.00 2.33 1.88 2.49 2.41 2.43 NH ₂ 400 BDL BDL BDL BDL BDL NMHC - 4.88 5.29 6.17 4.60 5.93 5.34 MHC - 5.21 6.09 4.79 4.80 5.57 6.16 VOC - 4.64 3.59 5.34 6.49 5.61 6.30 SEPT PM ₁₉ 100 85.25 90.13 87.38 86.88 89.13 85.13 PM ₂₂ 60 48.1 53.6 51.9 53.5 53.1 54.8 SO ₂ 80 18.08 17.15 18.79 17.09 18.75 18.25 NO _x 80 28.19 27.73 29.01 25.94 28.49 28.04 CO 02 1.91 2.03 2.06 1.85 2.23 1.81 NMHC - 6.11 6.31 5.48 5.81 5.96 6.48 MHC - 6.71 5.96 5.64 5.18 6.09 5.04 VOC - 5.71 5.46 5.01 4.95 5.97 5.67 Average PM ₁₃ 60 51.76 55.74 52.62 52.36 53.26 54.70 April* SO ₂ 80 17.74 18.31 17.78 16.74 17.80 18.61 NO _x 80 27.22 26.93 26.10 23.31 25.08 25.43 CO 02 2.08 1.85 2.20 1.77 2.26 1.92 April* 400 BDL BDL BDL BDL BDL BDL SO ₂ 80 17.74 18.31 17.78 16.74 17.78 18.61 NO _x 80 27.22 26.93 26.10 23.31 25.08 25.43 Sept CO 02 2.08 1.85 2.20 1.77 2.26 1.92 MHC - 5.75 4.91 4.15 4.99 4.27 5.48 4.82 MHC - 5.75 4.91 4.15 4.99 4.27 5.48 4.82 MHC - 5.75 4.91 4.15 4.99 4.27 5.48 4.82 MHC - 5.75 4.91 4.15 4.95 5.97 5.50 NOTE: BDL = Below Detection Limit (µg/m²) = MMHC, (mg/m²) = CO, VOC Corona virus Markemic situation 27.4 27.5 4.84 4.82 4.99 4.27 5.48 4.82 4.99 4.27 5.48 4.82 4.99 4.27 5.48 4.82 4.99 4.27 5.48 4.82 4.99 4.27 5.48 4.82 4.99 4.27 5.48 4.82 4.99 4.27 5.48 4.82 4.99 4.27 5.48 4.82 4.99 4.27 5.48 4.82 4.99 4.27 5.48 4.82 4.						4.32			
SO2	SO2	AUGUST								
NO ₃ 80 28.0 27.8 28.9 28.4 30.1 28.9	NO _x 80 28.0 27.8 28.9 28.4 30.1 28.9									
NH; 400 BDL BDL BDL BDL BDL BDL BDL BDL MHC 4.88 5.29 6.17 4.60 5.93 5.34 6.49 6.61 6.30	NH ₃ 400 BDL BD				28.0	27.8	28.9	28.4		
NMHC	NMHC				2.00					
MHC	MHC									
PM-0	SEPT									6.16
PM _{1,2} 60 48.1 53.6 51.9 53.5 53.1 54.8 S0.2 80.9 18.08 17.15 18.29 17.09 18.75 18.25 No.2 80 18.08 17.15 18.79 17.09 18.75 18.25 No.2 80 28.19 27.73 29.01 25.94 28.49 28.04 28.0	PM ₂₂ 80 48.1 53.6 51.9 53.5 53.1 54.8 SO ₂ 80 18.08 17.15 18.79 17.09 18.75 18.25 NO ₂ 80 18.08 17.15 18.79 17.09 18.75 18.25 NO ₂ 80 28.19 27.73 29.01 25.94 28.49 28.04 CO 02 1.91 2.03 2.06 1.85 2.23 1.81 NH ₃ 400 BDL									
SO ₂	SO ₂ 80	SEPT								
NO _s 80 28.19 27.73 29.01 25.94 28.49 28.04 CO 02 1.91 2.03 2.06 1.95 2.23 1.81 NH ₃ 400 BDL BD	NO _x 80 28.19 27.73 29.01 25.94 28.49 28.04 28.04 CO 02 1.91 2.03 2.06 1.95 2.23 1.81 2.03 2.06 1.95 2.23 1.81 2.03 2.06 1.95 2.23 1.81 2.03 2.06 1.95 2.23 1.81 2.03 2.06 1.95 2.23 2.06	1								18.25
NH ₅ 400 BDL BD	NH3 400 BDL		NOx	80	28,19	27.73	29.01	25.94	28.49	28.04
NMHC	NMHC									
MHC	MHC - 6.71 5.96 5.84 5.18 6.09 5.04 VOC - 5.71 5.46 5.01 4.95 5.97 5.67 VOC - 5.72 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.2									
Average	Average PM ₁₉ 100 92.80 94.65 91.17 88.88 92.15 92.99 PM ₁₉ 60 51.76 55.74 5.66 50.11 78.88 92.15 92.99 PM ₂₅ 60 51.76 55.74 52.62 52.36 53.26 54.70 SO ₂ 80 17.74 18.31 17.78 16.74 17.87 18.61 NO _X 80 27.22 26.93 26.10 23.31 25.08 25.43 CO 0.02 2.08 1.85 2.20 1.77 2.26 1.92 Sept NH ₃ 400 BDL		MHC	-		5.96	5,64	5.18	6.09	5.04
April* PM ₂₃ 60 51,76 55,74 52,62 52,36 53,26 54.70 April* So; 80 17,74 18.31 17,78 16,74 17,87 18.61 to NO ₂ 80 27,22 26,93 26,10 23,31 25,08 25,43 Sept NH ₁ 400 BDL	April - The Environmental Monitoring was suspended due to Nationwide Lockdown (Corona virus Marken) 277H + 1787 - 178 - 178 - 178 - 178 - 178 - 178 - 178 - 188 - 178 - 188 -			-	5.71					
April* So	April* SO ₂ 80 17.74 18.31 17.78 16.74 17.87 18.61 17.87 18.61 17.78 18.61 18.6	Average								
NO _x 80 27.22 26.93 26.10 23.31 25.08 25.43	April NO _x 80 27.22 26.93 26.10 23.31 25.08 25.43	A								
Sept D	Sept 200 1.53 2.00 1.57 2.00 1.57 2.00 2.00 1.57 2.00 2		NOx	80	27.22	26.93	26.10	23.31	25.08	25.43
2020 NMHC - 4.95 4.92 4.99 4.27 5.48 4.82 MHC - 5.75 4.91 4.15 5.82 St. 5.83 5.43 VOC - 5.63 3.79 4.90 4.90 VOC - 5.63 3.79 4.90 VOC - 5.63 3.79 4.90 VOC - 5.63 3.79 4.90 VOC - 7.64 VOC - 7.65 VOC -	2020 NMHC - 4.95 4.92 4.99 4.27 5.48 4.82 MHC - 5.75 4.91 4.15 35.E Sh 5.83 5.43 VOC - 5.63 3.79 4.90 WOC - 5.63 3									
MHC	MHC							4.27	5.48	
NOTE: BDL = Below Detection Limit (µg/m³) = PM ₁₀ , PM ₂₀ , SO ₂ , NO ₂ , NH ₃ (ppm) = NMHC, MHC, (mg/m²) = CO, VOC April – The Environmental Monitoring was suspended due to Nationwide Lockdown (Corona virus	NOTE: BDL = Below Detection Limit (µg/m²) = PM ₁₀ , PM ₂₀ , SO ₂ , NO, NH ₃ , (ppm) = NMHC, MHC, (mg/m²) = CO, VOC "April – The Environmental Monitoring was suspended due to Nationwide Lockdown (Corona virus Marketine Situation)."							STARE SH	5.83	5.43
April – The Environmental Monitoring was suspended due to Nationwide Lockdown (Corona virus Vangemic situation	April – The Environmental Monitoring was suspended due to Nationwide Lockdown (Corona virus Partiernic situation)		VOC						C 1 19	5.30
April – The Environmental Monitoring was suspended due to Nationwide Lockdown (Corona virus Vangemic situation	April – The Environmental Monitoring was suspended due to Nationwide Lockdown (Corona virus Partiernic situation)				VH.	211010	المرا	S CONTON	3 15	
April - The Environmental wormoring was adapted due to restorm to Education (April - The Environmental Monitoring was suspended due to Halloninso Costos III (1975)			$(mg/m^3) =$	co, voc	a to Nationwide	nekdowa (Coross	ZI GOLDO	100 m	/
			NMHC, MHC	was the second			LOCKOOWN (COIONA)	All Della Strate	25// XVO	
	2 of 5		nmental Mon	itoring was s	uspended du	C to Hallominido		10.300	11 1102	

HURL Gorakhpur Noise Quality Data April-20-September-20

	C conditions for the period April 2020 - September 2020 for proposed Ammonia - Urea 50 MTPD) plants of HURL at Gorakhpur
(ZZOOMII D CO	ov mir b) plants of floric at oblampar

-		RAKHPUR,						
MONTH	Parameters	Prescribed Limits in db(A) as per NAAQS Ind. / Res. Area	HURL Plant (SA1)	HURL Admin Building (SA2)	HURL residence Quarter B-9 (SA3)	HURL residence Quarter E-13 (SA4)	Karmaha Village (SA5)	Bargadwa • Village (SA6)
200000	24hrs Avg. Leq. Value db(A)		59.2	58.0	47.0	46.1	45.9	51.6
MAY	Daytime Avg. Leq. Value db(A)	75/55/65	60.5	59.4	48.4	47.5	47.4	53.8
	Nigh time Avg. Leq. Value db(A)	70/45/55	53.0	51.9	40.3	40.4	39.5	44.5
	24hrs Avg. Leq. Value db(A)		56.8	54.7	44.5	45.2	46.0	44.5
JUNE	Daytime Avg. Leq. Value db(A)	75/55/65	61.1	59.6	49.4	49.4	48.6	51.8
	Nigh time Avg. Leq. Value db(A)	70/45/55	51.8	50.9	38.9	38.9	38.5	43.5
	24hrs Avg. Leq. Value db(A)		59.9	58.6	47.7	47.7	46.7	52.2
JULY	Daytime Avg. Leq. Value db(A)	75/55/65	61.5	60.1	49.3	49.3	48.2	53.8
	Nigh time Avg. Leq. Value db(A)	70/45/55	51.4	50.2	38.6	38.6	37.8	42.7
	24hrs Avg. Leq. Value db(A)	-	55.4	54.1	42.9	42.8	41.9	47.2
AUGUST	Daytime Avg. Leq. Value db(A)	75/55/65	60.5	59.1	48.3	48.3	47.2	52.9
	Nigh time Avg. Leq. Value db(A)	70/45/55	50.4	49.2	37.5	37.6	36.7	41.6
	24hrs Avg. Leq. Value db(A)		57.9	56.6	45.7	45.8	44.7	50.3
SEPT	Daytime Avg. Leq. Value db(A)	75/55/65	59.5	58.1	47.3	47.3	46.3	51.9
	Nigh time Avg. Leq. Value db(A)	70/45/55	49.3	48.1	36.4	36.5	35.7	40.5
Average	24hrs Avg. Leq. Value db(A)		57.8	56.4	45.6	45.5	45.0	49.2
April*	Daytime Avg. Leq. Value db(A)	75/55/65	60.6	59.3	48.5	48.4	47.5	52.8
Sept 2020	Nigh time Avg. Leq. Value db(A)	70/45/55	51.2	50.1	38.3	38.4	37.6	42.6

*April - The Environmental Monitoring was suspended due to Nationwide Lockdown (Corona virus Pandemic situation

3 of 5

HURL Gorakhpur Ground Water Quality April-20-September-20

	HURL, GORAKHPU. AVERAGE RES (Results are exp.	ULTS (APRIL ressed in mg/	* TO SEPTE	MBER 2020) rwise stated	
SI. No	Parameters	Hand Pump Adm. Bldg. (Project Site)	Hand Pump Quarter No B-8 (GW2)	Hand Pump Bargadwah (GW3)	Requirement (Acceptable) / Permissible Limits (IS:10500:2012)
PH	YSICAL	(GW1)			
1	pH	7.2	7.4	7.5	6.5-8.5
2	Temperature (°C)	29.7	29.3	29.3	0.3-6.3
3	Colour, HU	<5	<5	<5	5/15
4	Odour	Agreeable	Agreeable	Agreeable	Unobj.
5	Taste	Agreeable	Agreeable	Agreeable	Agreeable
6	Turbidity (NTU)	<5	<5	<5	1/5
7	Total Suspended Solid	20	21	23	- 110
8	Total Dissolved Solids	408	404	413	500/2000
CHI	EMICAL		101	110	00012000
1	P- Alkalinity as CaCO ₃	NIL	NIL	NIL	
2	Total Alkalinity as CaCO ₃	189	209	220	200/600
3	Chloride as Cl	69	76	66	250/1000
4	Sulphate as SO ₄	59	63	73	200/400
5	Nitrate as NO ₃	5.7	6.3	6.4	45/NR
6	Fluoride as F	<0.4	< 0.4	<0.4	1.0/1.5
7	Total Hardness as				
1	CaCO ₃	394	366	342	300/600
8	Ca. Hardness as CaCO ₃	245	212	192	75/200
9	Mg. Hardness as CaCO ₃	149	158	150	30/100**
10	Sodium as Na	21.4	28.0	25.3	-
.11	Potassium as K	3.5	4.5	3.2	-
12	Silica as SiO ₂	17	17	17	
13	Iron as Fe	0.40	0.25	0.28	0.3/NR
-	AVY METALS			24/2	
1	Manganese as Mn	BDL	BDL	BDL	0.1/0.3
2	Total Chromium as Cr	BDL	BDL	BDL	0.05/NR
3	Lead as Pb	BDL	BDL	BDL	0.01/NR
4	Zinc as Zn	0.66	0.76	0.55	5.0/15
5	Cadmium as Cd	BDL	BDL	BDL	0.003/NR
6	Copper as Cu	BDL	BDL	BDL	0.05/1.5
7	Nickel as Ni	BDL	BDL	BDL	0.02/NR
8	Arsenic as As	BDL	BDL	BDL	0.01
9	Selenium as Se	BDL	BDL	BDL	0.01/NR
1	IERS	BDI	PDI I	BDI I	0.04/0.02
	Oil & Grease	BDL	BDL	BDL	0.01/0.03
2	Ph.Compound as C ₆ H ₅ OH	BDL	BDL	BDL	0.001/0.002
3	Coliform (MPNI/100ml)	-50	-E0	-50	
- The Enviro	onmental Monitoring was suspended due	to Nationwide Lock	double All Said	Pandemic situatio	n)
	_ Show	ar.			

HURL Gorakhpur Surface Water Quality Data April-20-September-20

	HURL, GORAKHPUR, SURFACE WATER QUALITY DATA- 2020 AVERAGE RESULTS (APRIL* TO SEPTEMBER 2020) (Results are expressed in mg/l, unless otherwise stated)						
	SI. No.	Parameters	Rohini River (SW1)	Dismantled Pump House ChilwaTaal, (SW2)	Near New Bridge ChilwaTaal (SW3)	Requirement (Acceptable) / Permissible Limits(IS:10500: 2012)	
	PHY	SICAL		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	1	Temperature (°C)	29.1	29.1	29.6	-	
	2	Colour,HU	17.4	12.8	17.6	5/25	
	3	Turbidity (NTU)	26.2	29	33	5/10	
	4	pH	7.5	7.6	7.2	6.5-8.5	
	5	Total Dissolved Solids	404	393	406	500/2000	
	6	Suspended Solids	62	57	58		
	-	MICAL	172	181	167	200/600	
	1	Total Alkalinity as CaCO ₃ Chloride as Cl	72	73	78	250/1000	
	3	Sulphate as SO ₄	68	75	69	200/400	
	4	Nitrate as NO ₃	5.9	6.0	5.4	45/NR	
	5	Fluoride as F	<0.4	<0.4	<0.4	1.0/1.5	
	6	Total Hardness as CaCO ₃	337	389	386	300/600	
	7	Calcium Hardness as CaCO ₃	191	226	226	75/200	
	8	Magnesium Hardness as CaCO ₃	146	163	160	30/100	
	9	Dissolve Oxygen	7.0	6.7	6.3	-	
	10	COD	25.0	24.6	27.5	-	
	11	BOD (3 days at 27 °C)	4.6	4.8	5.2		
	12	Sodium as Na	31	19	4		
	13	Potassium as K	5	3			
	-	Iron as Fe	0.17	0.23	0.23	0.3/NR	
	2	Manganese as Mn	BDL	BDL	BDL	0.1/0.3	
	3	Total Chromium as Cr	BDL	BDL	BDL	0.05/NR	
	4	Lead as Pb	BDL	BDL	BDL	0.01/NR	
	5	Zinc as Zn	0.89	0.76	0.63	5.0/15	
	6	Cadmium as Cd	BDL	BDL	BDL	0.003/NR	
	7	Copper as Cu	BDL	BDL	BDL	0.05/1.5	
	8	Nickel as Ni	BDL	BDL	BDL	0.02/NR	
	9	Arsenic as As	BDL	BDL	BDL	0.01	100
	10	Selenium as Se	BDL	BDL	BDL	0.01/NR	
	-	HERS	DDI	BDL	BDL	0.01/0.03	
	1	Oil & grease	BDL	BDL	BDL	0.001/0.002	
	3	Phenolic Compound Coliform (MPN/100ml)	678	684	688	-	
	*April -	The Environmental Monitoring was suspend		Q CARE SHE	orona virus Pand		
							5 of 5

HURL Gorakhpur Noise Quality Data April-20-September-20

Compliance of EC conditions for the period 16th September 2019 – 15th March 2020 for Proposed Ammonia-Urea (2200MTPD & 3850 MTPD) plants of HURL at Gorakhpur

HURL, GORAKHPUR, NOISE QUALITY DATA-2019-20 AVG. (16th SEPTEMBER 2019 to 15th MARCH 2020)

MONTH	Parameters	Main Gate HURL Plant (SA1)	Admin Building HURL (SA2)	HURL Residential Campus Quarter No B-9 (SA3)	HURL Residential Campus Quarter No E-13 (SA4)	Karmaha Village (SA5)	Bargadwah (SA6)	Prescribed Limits in dB(A) as per NAAQS (Ind. / Res. Area)
16 th	24-hrs Avg L _{eq.} Value dB(A)	64.5	63.2	52.1	52.2	51.1	56.6	
September to 15 th	Day time Log. Value dB(A)	65.8	64.5	53.5	53.4	52.5	58	75/55
October 2019	Night time L _{eq.} Value dB(A)	58.6	57.6	46	46.1	45.3	50.5	70/45
	24-hrs Avg L _{eq.} Value dB(A)	58.2	57.6	51.3	50.5	50.3	55	
16 th	Day time Leq. Value dB(A)	64.1	62.3	52.4	54.1	53.6	58.7	75/55
October to 15 th Nov. 2019	Night time L _{eq.} Value dB(A)	52.3	52.8	47.2	47.1	46.9	51.2	70/45
16 th	24-hrs Avg L _{eq.} Value dB(A)	57.3	57.3	51.3	51.4	51.6	56	
November to 15 th	Day time Leq.	62.3	61.1	51.8	55.4	54.9	60.1	75/55
December 2019	Night time Lea. Value dB(A)	52.3	53.4	47.8	47.3	48.2	51.8	70/45
16 th	24-hrs Avg L _{eq.} Value dB(A)	59.1	57.4	51.3	52	52.9	57.3	-
December 2019 to 15 th	Day time Leq. Value dB(A)	63.9	60.4	52.3	56.8	56.2	61.9	75/55
Jan. 2020	Night time Leg. Value dB(A)	54.2	54.6	48.6	47.2	49.5	52.7	70/45
. oth	24-hrs Avg L _{eq.} Value dB(A)	60.6	56.8	51.3	52.9	54	58.2	-
16 th Jan. to 15 th Feb.	Day time Leq. Value dB(A)	65.3	58.3	53.1	57.9	57.2	63.5	75/55
2020	Night time L _{eq.} Value dB(A)	55.9	55.3	48.9	47.8	50.7	52.8	70/45
16 th Feb. to	24-hrs Avg L _{eq.} Value dB(A)	61.6	60.2	49	49.1	48.3	53.2	-
15 th March	Day time Leq. Value dB(A)	64.9	63.2	52.4	52.3	51.6	56.8	75/55
2020	Night time Leq. Value dB(A)	58.2	57.1	45.5	45.9	44.9	49.6	70/45
	24-hrs L _{oq.} Value dB(A)	60.2	58.8	51.1	51.4	51.4	56.1	
AVG. 16 th Sept. 2019 to 15 th	Day time Leq. Value dB(A)	64.4	61.6	52.6	55.0	54.3	59.8	75/55
March. 2020	Night time L _{eq.} Value dB(A)	55.3	55.1	47.3	46.9	47.6	51.4	70/45

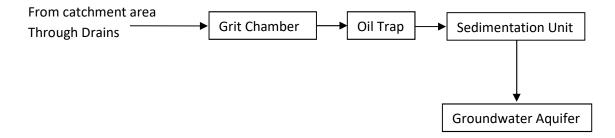
6 of 6

Annexure II

RAINWATER HARVESTING

The rain water collected from the roof of the permanent buildings shall be harvested for ground water recharge as a compensation to meet the requirement due to loss of permeable area promoting ground water recharge, maintenance of existing hydro-dynamic pattern of the area and to conserve the salinity of ground water in the area. The excess rainwater shall be sent to the trap through storm water drain and attempts shall be made not to mix any process waste with the storm water. The trap shall have two compartments, one consisting of sized boulders and the other, sized hard coke. The excess water from sized hard coke shall be collected in another tank before discharge in to natural drainage system. The drainage system of project area shall be aligned as per the existing natural drainage pattern of the area.

Rain water harvesting and recharging system shall be installed as per the relevant the central ground water board guidelines applicable for the area. The rain water harvesting/aquifer recharging system have been proposed as water conservation measure. The systems shall be installed at such location of the project area close to the Administrative building so as to facilitate collection of most of the rain water from the roofs of the building in the project area. Similarly, same system of rain water harvesting shall be implemented in the township.


The bores shall be provided within 3 m deep enclosures, which will comprise layers of boulders, gravel and coarse sand so as to separate suspended matter from the rainwater. Three nos. of ground water recharging systems have been proposed to be developed in the township area and three nos. in the factory area. Rainwater harvesting system will consist of the following units:

- Rainwater Collection System
- 2. Rainwater Filtration System
- 3. Rainwater Recharging Pond including an active well of depth 20m and dia 100-150mm.

The system will be cleaned during dry season and will be made ready to collect water for harvesting from its command area during monsoon. Provision shall also be made in the rainwater harvesting system for Chlorination/disinfection especially during the first phase of monsoon. The system shall be designed as per the guidelines for rainwater harvesting prepared by Central Ground Water Board (Ministry of Water Resources).

The scheme of rain water harvesting and aquifer recharging is presented below:

Block Diagram for Proposed Rain Water Harvesting / Aquifer Recharging System

The rainwater harvesting system for the fertilizer plant will follow the guidelines laid out by different Departments/Ministries as far as possible.

- a) Guidelines on Artificial Recharge of Water, Central Water Ground Board, Ministry of Water Resources, Gol (2000);
- b) Manual on Artificial Recharge of Ground Water, Central Water Ground Board, Ministry of Water Resources, Gol (2007);
- c) Rain Water Harvesting and Conservation: Manual, Consultancy Services Organization, CPWD, GoI (2002);

The sizing of the rain water collection drain and sub-units including the harvesting pond shall be calculated depending upon the maximum rain intensity within 50 years and roof area of the building after finalization of the building design.

(Subodh Dixit)
Sr Manager
Hindustan Urvarak & Rasayan Ltd. (HURL)
Admin Building, Fertilizer Township Gorakhpur
PO-Fertilizer Factory, Dist. - Gorakhpur-273007
Telefax – 0551-2261177

Annexure III

GREEN BELT DEVELOPMENT & PLANTATION OF TREES

The project proponent shall develop greenbelt in an area of 33% i.e., nearly 130 acres out of 350 acres plant area of the project. The greenbelt of 10m width around periphery shall be provided (Plate A)

5000 trees per year in 5 year shall be planted in nearby village with the consultation of the villagers. Survival rate of plants shall be reported to RO, MoEF&CC in 6 monthly compliance reports.

Purpose

Trees and plants are an essential component of healthy environment. In addition to maintaining the oxygen-carbon dioxide balance in the atmosphere through photosynthesis, trees and plants control air and noise pollution, control soil erosion, provide food and shelter to domestic and wild animals including birds and insects, and improve the aesthetic value of the environment. The utility of the green belt predominantly lies in its capacity to attenuate the fugitive emission and spillage. Thus, the objectives of the proposed green belt program are as pillows:

- a) To control air pollution due to fugitive emissions and spillage.
- b) To attenuate noise generated by various machines.
- c) To attenuate the effect of accidental release of toxic gases.
- d) To reduce the effect to fire and explosion.
- e) To improve the general appearance and aesthetics of the area.
- f) To provide food and habitat for wildlife.
- g) To control soil erosion.
- h) To obscure the proposed facilities from general view.

Areas to be afforested

Gorakhpur Fertilizer plant shall be established in vacant land in the battery limit of FCI of 350 acres of land. Green-belt development program shall be undertaken in 33% of the plant area including 10 m wide green belt around the battery limit of the plant. There exists a green cover around the existing abandoned fertilizer plant. The existing township is well planned with a proper forestation. While preparing the layout plan for locating the different facilities, extreme care has been exercised to preserve the existing plantation to the extent possible. Trees, lawns and gardens shall be developed within the premises to cover all the vacant areas. Extreme care shall be taken to utilize all available areas for forestation.

Scheme and Species for Green Belt

The general approach for selection of species for green belt development is their potential for attenuation of fugitive emissions and noise, diversity of vegetation, introduction of species attracting birds and animals, and to create a natural habitat. It is proposed to develop trees of different heights so as to provide cover from ground level up to the canopy of tall tree species. Further, trees with big foliage and those known to prosper well in the area will be developed. Preference will be given to fruit bearing trees so as to provide food and shelter to birds and insects.

The plan for development of green belt is as given below:

- a) The distance between two plants should not be less than 3.0 m so that a 10 m width green belt will have three to four rows of plantations. Thus, a 10 m wide green belt within a plant boundary of 1.0 km will have 1110 plants.
- b) A pit of 45 cm x 45 cm x45 cm must be dug for plantation of saplings which are at least 6 months old.
- c) Samplings must be planted at the onset of monsoon.

Different species in the green belt suggested having dense stratified 3 to 5 layer canopy so as to form a visible barrier and wind breaker

- a) On the outer ring of the green belt facing fugitive emissions from the open surface and roads close plantation of 2 to 3 rows of evergreen *Alstoniascholaris* intermixed with *FicusCunea* and Babul.
- b) Behind the outer layer, fast growing evergreen plants having good fugitive emission removing capacity like evergreen *MahuaIndica* and *Derris Indica*, Sagwan, Gambhar and Putranjiya.
- c) Middle layer may be planted with Silver Oak which is tall, hardy and evergreen.
- d) In the next layer some typical hard and fast growing plants like *Leucaena, Acacia auri-culiformis, Cassia fistula, C. Siamea, Inga ducis*may also be considered.
- e) In the inner perhiberyBouganvellia may be planted as it has high capacity for absorbing toxic gases.
- f) Some plants having good timber value like *Dalbergiasissoo*, *Albizzialebbek*, *Azadiractaindica*, *Tectonsgrandis*along with fruit trees like Ber, Guava, Jamun, Jack fruit and Bel may also be planted to attract birds.
- g) For fencing purpose plants from *Asclepiadaceae* and *Apocynaceae* families like *AlstoniaCalotropis* which are resistant to grazing may be considered.
- h) The entire green belt may be interspersed with climbers.

Efforts would be made by M/s HURL in collaboration with State Forest Department to explore mutual areas of interest in the area of identifying trees/plants to maintain/enhance the current biodiversity index.

(Subodh Dixit)
Sr. Manager
Hindustan Urvarak & Rasayan Ltd. (HURL)
Admin Building, Fertilizer Township Gorakhpur
PO-Fertilizer Factory, Dist. - Gorakhpur-273007
Telefax – 0551-2261177

Annexure IV

Government of India

Ministry of Environment, Forests and Climate Change (MoEF&CC) Regional Office – Lucknow

MONITORING REPORT PART I DATA SHEET

1		Project Type	Fertilizer
2		Name of the project	Ammonia-Urea Fertilizer Project
			Hindustan Urvarak & Rasayan Limited, Gorakhpur
3		Clearance letters/Om No. and	J-11011/166/2016-IAII(I)
		dated	
4		Locations	Gorakhpur
	а	Taluk(S)	
		District	Gorakhpur
	b	State(S)	Uttar Pradesh
	С	Latitudes/Longitudes	Location Longitude Latitude Elevation (m) Northern Boundary, 83°21′50″E 26°49′26″N 84 NW Boundary 83°21′50″E 26°49′15″N 83 Eastern Boundary 83°22′10″E 26°49′08″N 87 Western Boundary 83°21′25″E 26°48′58″N 85 South-West Boundary 83°21′27″E 26°48′54″N 84 South-East Boundary 83°21′58″E 26°48′53″N 84 Source: GPS
5		Address for correspondence	
	a	Address of concerned Project Chief Engineer (with Pin Code & Telephone/Telex/fax nos)	The Sr. Vice President Hindustan Urvarak & Rasayan Ltd. (HURL) Admin Building, Fertilizer Township Gorakhpur PO-Fertilizer Factory, Dist Gorakhpur-273007 Telefax – 0551-2261178
	b	Address of Executive Project Engineer (with Pin Code/fax numbers)	Senior Manager Hindustan Urvarak & Rasayan Ltd. (HURL) Admin Building, Fertilizer Township Gorakhpur PO-Fertilizer Factory, Dist Gorakhpur-273007 Telefax – 0551-2261177
6		Salient Features	
	а	Salient features of the project	The Ammonia and Urea plants shall be one of the latest mega capacity plants (2200 MTPD for Ammonia and 3850 MTPD for Urea). The technology suppliers shall consider the latest

technological features with an objective to have lowest energy consumption & high reliability of plant having state of the art technology with latest technological features. Ammonia and Urea plants planned shutdown shall be once in two years. One blast proof central control room for location of control & monitoring of operation of all Ammonia/Urea/Offsite & utility plants shall be provided by LSTK Contractor. The ETP facility shall treat all effluents, continuous, intermittent or emergency discharges from ammonia/urea plants. All liquid treated effluent from various sections of the plants shall be collected in final effluent pond made of RCC. The treated effluent shall be pre-treated with chemicals to make it Suitable for feeding to RO plant. The RO plant shall be two stage RO systems. The treated water from RO shall be recycled back to filtered water tank in WTP. The final reject waste water from WTP(ZLD Unit)units shall be further treated in thermal evaporation unit using low pressure steam to achieve zero liquid discharge from ETP plant. All Liquid & gaseous effluents generated from various plans & facilities shall be treated before final discharge to meet the requirements of Central/State pollution control board. b Of the environmental An Environmental Management Plan (EMP) has been prepared keeping in view all possible management plans. strategies oriented towards the impact minimization. The EMP for the proposed project is divided into three phases i.e. Planning, Construction and Operational phase. During the planning stage, Energy efficient machines with 5star rating shall be utilised along with LED street lights and use of solar energy. Ultra low NOx burners shall be integrated into the system to reduce NOx emissions. All piping and instrumentation diagrams and plant layout shall be reviewed as a part of HAZOP/HAZAN studies to assess the risks involved. Noise suppression measures such as enclosures and buffers will be used to limit noise levels in areas frequented by personnel to below 85 dB(A). The overall impact of the pollution on the

			anvironment during construction ab	aco ic localicad
			environment during construction ph in nature and is for a short period at	
			· ·	
			order to develop effective mitigation	•
			construction activities shall be unde	•
			controlled and managed by LST/Nor	
			contractor under the guidance of PN	•
			mandatory for these contractors to	·
			site/project specific HSE Policy, HSE	Plan, HSE
			management system.	
			The environmental management pla	an during the
			operational phase of the plant shall	be directed
			towards the following:	
			 Ensuring the operation 	of various
			process units as per spe	cified
			operating guidelines/op	erating
			manuals.	
			Strict adherence to main	ntenance
			schedule for various	
			machinery/equipment.	
			Good Housekeeping pra	actices.
			Post project environment	
7		Breakup of the project area	. ,	
	а	Project area	598.22 acres (Plant Buildings-272 ac	re, Non-plant
			Building & Storage-326.22 acre)	
8		Breakup of project affected	No Project Affected Persons are invo	olved as there
		population with enumeration of	is no displacement of population. Th	ne project is
		those losing house/dwelling units	coming up in old plant complex of Fe	CIL, Gorakhpur.
		only, agriculture land only, both		
		dwelling units and agriculture land		
		and landless labours/artisans		
	а	SC, ST/Adivasis	NA	
	b	Others	NA	
9		Financial Details		
	а	Project cost as originally planned	Rs. 7085 crore (Feb' 2017)	
		and subsequent revised estimates	Revised Estimate: Rs. 7085 crore (N	May 2019)
		and the years of price reference		
	b	Allocation made for environmental	It is included in the project cost. Act	ual cost will be
		management plans with item wise	furnished after finalisation of engine	eering details.
		and year wise breakup		
	С	Benefit cost ratio/internal rate of	Debt Service Coverage Ratio*	1.68
		return and the years of assessment	Internal rate of Return*	11.85
			*As per Project Feasibility Report	
	d	Whether © includes the cost of	Yes	
	L	environmental management as		

		shown in (b) above	
	е	Total expenditure on the Project	Rs. 4271.19crore
		so far	
	f	Actual expenditure incurred on the	Rs. 90.00 Lac
		environmental management plans	
		so far	
10		Forest land requirement	No Forest Land is involved
	а	The status of approval for a	NA
		diversion of forest land for non-	
		forestry use	
	b	The status of compensatory	NA
		afforestation, if any	
	С	The status of clear felling	NA
	d	Comments on the viability and	NA
		sustainability of compensatory	
		afforestation in the light of actual	
		field experience so far	
11		The status of clear felling in no-	NA
		forest area (such as submergence	
		area of reservoir, approach road) if	
		any with quantitative information	
12		Status of Construction	Construction of main plant is being done by M/s
			Toyo (TEIPL) and Off sites by other non LSTK
			contractors. Progress report is attached.
	а	Date of commencement	27 February 2018
	b	Date of completion (actual and /	36 months
		or planned)	
13		Reasons for the delay if the project	NA
		is yet to start	
14		Date of site visit	
	а	The dates on which the project	Visit to be done.
		was monitored by the Regional	
		Office on previous occasions, if any	
	b	Date of site visit for this	Visit to be done
		monitoring report	

(Subodh Dixit)
Sr. Manager
Hindustan Urvarak & Rasayan Ltd. (HURL)
Admin Building, Fertilizer Township Gorakhpur
PO-Fertilizer Factory, Dist. - Gorakhpur-273007
Telefax – 0551-2261177

Annexure-5

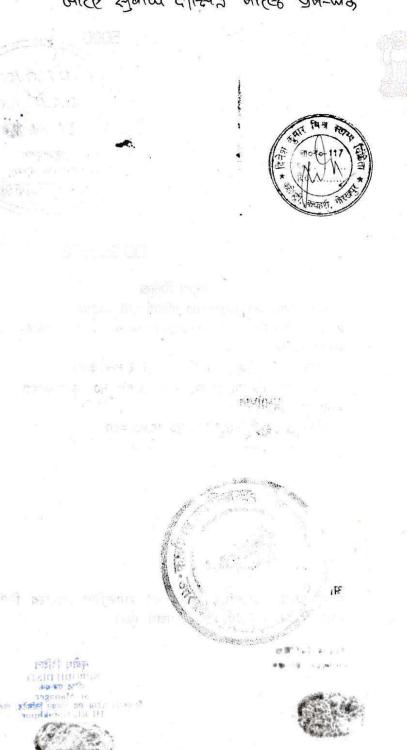
Agreements & No Objection Certificates

उत्तर प्रदेश UTTAR PRADESH

DD 958672

पट्टा विलेख

वार्षिक किराया **मु० 10000=00** प्रतिवर्ष प्रति हेक्टेयर औसत वार्षिक किराया (मु० 10,000=00 प्रतिवर्ष X 7.745 हेक्टेयर)= मु० 77450=00 आर्टिकल 35(V) सेड्यूल. 1—बी के अनुसार मूल्यांकन— (औसत वार्षिक किराया मु० 77,450=00 X 6)= मु० 4,64,700=00 यानी मु० 4,65,000=00 मूल्यांकन का 4% अदा स्टैम्प-**मु० 18,600=00**



नगर निगम, गोरखपुर जिरये श्री रामसूचित, राजस्व निरीक्षक नगर निगम, गोरखपुर।......प्रथम पक्ष।

29. 20 20 . हि-31414. 3वटम हेब सिक्स प्रिण आरडमती, ब्रोन्ट आहमती.

DD 958637

(2)

व

ग्राम—जंगल बेनी माधव नं0—1, तप्पा—कस्बा, परगना—हवेली, तहसील—सदर, जनपद—गोरखपुर स्थित ताल (सम्पत्ति नगर निगम) आराजी संख्या—706/258, रकबा— 19.14 एकड़ यानी 7.745 हेक्टेयर को द्वितीय पक्ष अपने कारखाने में जल आपूर्ति के लिये पट्टे पर लेना चाहता है।

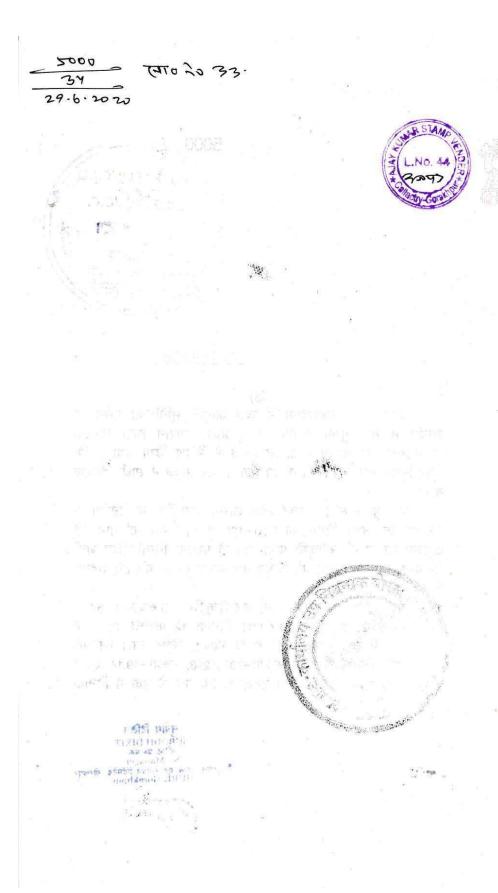
राजस्य । बरायक स्वर विवयः वोष्ट्रवयुः

SUBODH DIXIT वरिष्ठ प्रबन्धक Sr. Manager 29.6.2020 मिट्ट अवाज दीकित कार्ट प्रम-अक 29.6.2020 क्रिक्स क्षेत्र कार्टि प्रम-अक

DD 958638

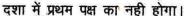
(3)

फर्टिलाइजर कारखाना में जल आपूर्ति सुनिश्चित करने के सम्बंध में मा0 मुख्य सचिव, उत्तर प्रदेश शासन द्वारा दिनांक 15.02.2017 को शासन में आहूत बैठक में निर्देश दिया गया है कि नगर निगम गोरखपुर विधि के आलोक में इस सम्बंध में सार्थक विचार करे।


मा0 मुख्य सचिव, उत्तर प्रदेश शासन द्वारा दिये गये निर्देश के अनुसार एवं नगर निगम की धारा—128 में दिये गये प्राविधानों के अनुरूप शासन की स्वीकृति प्राप्त होने के पश्चात् निम्नलिखित शर्तों पर प्रथम पक्ष उक्त ताल को द्वितीय पक्ष को पट्टा पर देने हेतु सहमत है:—

1— यह कि शासन की स्वीकृति संख्या—1164/ नौ—7—2018—7(जनरल)/2017 दिनांक 12 फरवरी, 2020 के क्रम में ग्राम—जंगल बेनी माधव नं0—1, स्थित ताल (सम्पत्ति नगर निगम) आराजी संख्या—706/258, रकबा—19.14 एकड़ यानी 7.745 हेक्टेयर का पट्टा द्वितीय पक्ष के हक_में दिनांक

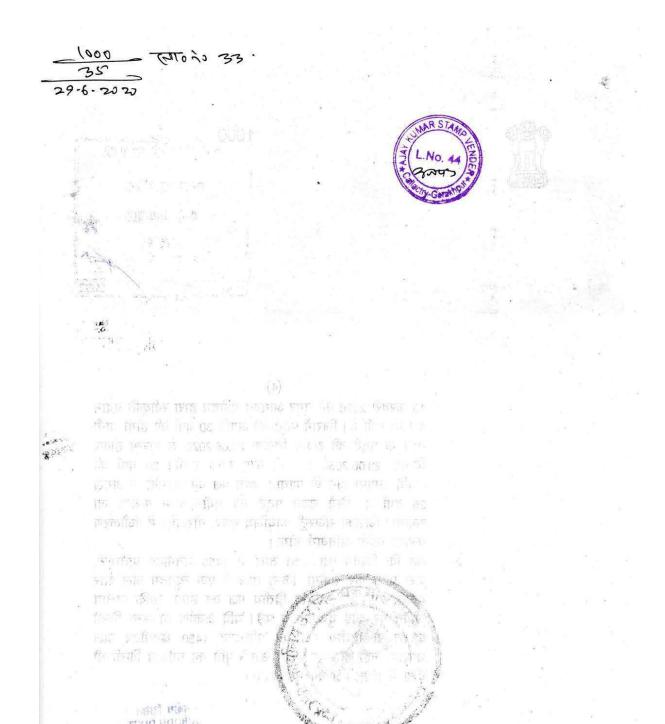
राजस्व निरीचक नगर निमम; होरसाव्य स्टाट



BK 325757

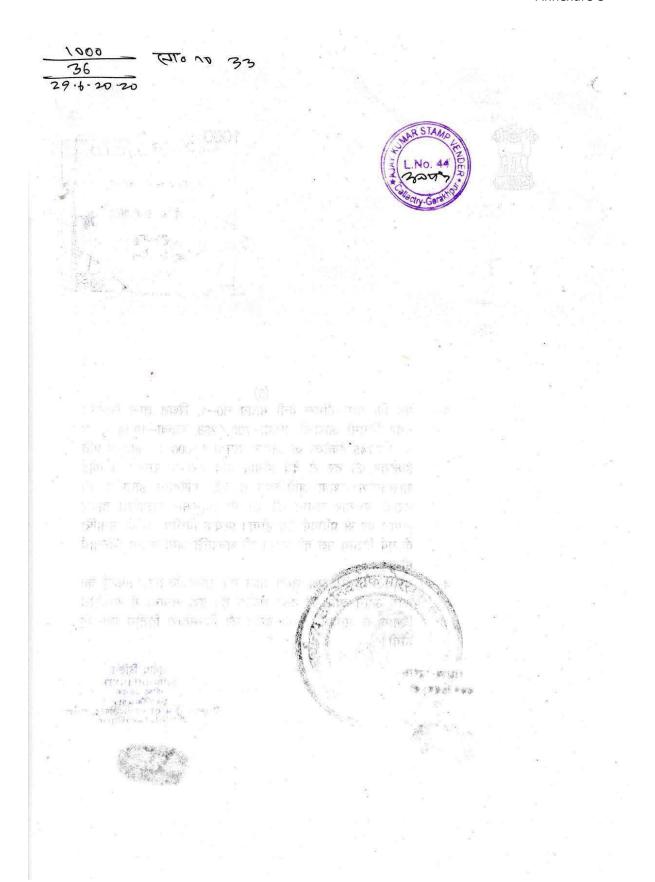
(4)

13 फरवरी 2020 को नगर आयुक्त महोदय द्वारा स्वीकृति प्रदान कर दी गयी है। जिसमें पट्टे की अवधि 30 वर्षों की होगी यानी ताल के पट्टे की अवधि दिनांक 29.06.2020 से प्रारम्भ होकर दिनांक 28.06.2050 तक के लिए मान्य होगी। 30 वर्षों की अवधि समाप्त होने के पश्चात् प्रथम पक्ष की सहमति से अगले 25 वर्षों के लिये उक्त पट्टे का नवीनीकरण कराया जा सकेगा। जिसका रजिस्ट्री कार्यालय सदर, गोरखपुर में पंजीकरण कराया जाना अनिवार्य होगा।


2— यह कि द्वितीय पक्ष उक्त ताल से 1450 घनमीटर प्रतिघण्टे, जल प्राप्त कर सकेगा, किन्तु ताल में एक न्यूनतम जल स्तर बनाये रखने का दायित्व द्वितीय पक्ष का होगा, ताकि जलीय जीवन पर कोई दुष्प्रभाव न पड़े। यदि अवर्षण या अन्य किसी कारण से द्वितीय पक्ष को प्रतिघण्टे 1450 घनमीटर जल उपलब्ध नहीं हो पाता है तो उसके पूर्ति का दायित्व किसी भी

राजस्व निरीणक भगर निगम। होरखन्त

BK 325758

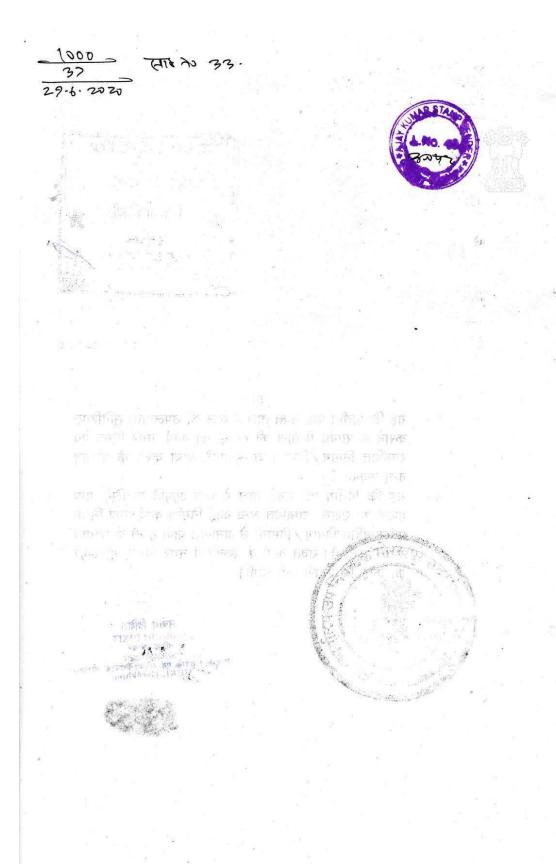

3— यह कि ग्राम—जंगल बेनी माधव नं0—1, स्थित ताल (सम्पत्ति नगर निगम) आराजी संख्या—706 / 258, रकबा—19.14 एकड़ यानी 7.745 हेक्टेयर का लगान रूपया 10,000=00 प्रतिवर्ष प्रति हेक्टेयर की दर से देय होगा। यदि दरों के सम्बंध में कोई शासनादेश अथवा अधिनियम में कोई परिवर्तन होता है, तो उसके अनुसार लगान की दर भी तद्नुसार संशोधित होकर लगान दर से प्रतिवर्ष देय होगा। प्रत्येक वित्तीय वर्ष के समाप्ति के पूर्व द्वितीय पक्ष को पट्टा की धनराशि जमा करना अनिवार्य होगा।

4- यह कि द्वितीय पक्ष उक्त ताल का सौन्दर्यीकरण / सफाई का कार्य अपने व्यय पर करा सकता है। इस सम्बन्ध में सम्बंधित विभाग से अनापित प्राप्त करने की जिम्मेदारी द्वितीय पक्ष की

होगी।

राधस्य विशेषक स्वर विवयपूर्वो स्वर् सुबोध दिक्षित
SUBODH DIXIT
विष्ठ प्रबच्छ
प्रबच्छ
Son Manager
हिन्दुस्तान उर्वरक एवं रमायन लिमिटेड, गोरखप्र
HURL, Gorakhpur

BK 325759


(6)

- उच्च कि द्वितीय पक्ष, उक्त ताल में जल की उपलब्धता सुनिश्चित कराने के सम्बंध में ताल की खुदाई का कार्य, नगर निगम एवं सम्बंधित विभाग / विभागों से अनापत्ति प्राप्त करने के पश्चात् करा सकता है।
- 6— यह कि द्वितीय पक्ष उक्त ताल में जल आपूर्ति के लिए, पम्प हाउस या उससे सम्बंधित अन्य कोई निर्माण कार्य नगर निगम एवं सम्बंधित विभाग / विभागों से अनापित प्राप्त करने के पश्चात् करा सकता है। उक्त कार्य के सम्बंध में नगर निगम, गोरखपुर की कोई जिम्मेदारी नहीं होगी।

AE 412425

(7)

- 7— यह कि द्वितीय पक्ष उक्त ताल में पूर्व से हो रहे किसी भी परम्परागत कार्य में कोई हस्तक्षेप नहीं करेगा।
- 8— यह कि पट्टे की अवधि में, आवश्यकता पड़ने पर, प्रथम पक्ष को सम्पूर्ण ताल या उसके किसी भाग का कब्जा लेने का पूर्ण अधिकार होगा।

राजस्य विशेषक वयर किवन, ब्रोस्कर्-

500 - HTOÃO 33

293時年202000950014524

पट्टा विलेख/ कबूलियतनामा

बही स॰: 1

रजिस्ट्रेशन स॰: 4293

प्रतिफल- 465000 स्टाम्प शुल्क- 18600 बाजारी मूल्य - 0 पंजीकरण शुल्क - 4650 प्रतिलिपिकरण शुल्क - 80 योग : 4730

श्री हिन्दुस्तान उर्वरक एवं रसायन लिमिटेड जरिये वरिष्ठ प्रबन्धक द्वारा सुबोध दीक्षित अधिकृत पदाधिकारी/ प्रतिबिधि,

वरिष्ठ प्रबन्धक

व्यवसाय : नौकरी

निवासी: हिन्दुस्तान उर्वरक एवं रसायन लिमिटेड, गोरखपुर

श्री, हिन्दुस्तान उर्वरक एवं रसायन तिमिटेड जरिये वरिष्ठ प्रबन्धक द्वारा

ने यह लेखपत्र इस कार्यालय में दिनाँक 29/06/2020

एवं 04:12:12 PM बजे

निबंधन हेतु पेश किया।

पदाधिकारी/ प्रतिनिधि

स्बोध दीक्षित अधिकृत

रजिस्ट्रीकरण अस्टब्बरी के हस्ताक्षर

योगेन्द्र प्रताप सिंह उप निबंधक :सदर प्रथम गोरखपुर 29/06/2020

श्री दिनेश शाही निबंधक लिपिक

CC 269185

(8)

यह कि द्वितीय पक्ष, किसी भी दशा में उक्त ताल या उसके किसी अंश का पट्टा / हस्तान्तरण किसी तीसरे पक्ष के पक्ष में नहीं करेगा। उभय पक्ष उपरोक्त पट्टा विलेख पढ़ कर समझकर और सहमत

होकर अपना-अपना हस्ताक्षर बनाया।

सुबोध दिक्षित
SUBODH DIXIT
वरिष्ठ प्रबन्धक
Sr. Manager
हिन्दुस्तान उर्वरक एवं रसायन लिम्टिंड्
HURL, Gorakhpur

रावल विरोधक

39 39 39

(ATO N 33

आवेदन सं॰: 202000950014524

बही स०: ।

रजिस्ट्रेशन स॰: 4293

वर्ष: 2020

निष्पादन लेखपत्र वाद सुनने व समझने मजमुन व प्राप्त धनराशि रु प्रलेखानुसार उक्त

पट्टा दाता: 1

श्री नगर निगम गोरखपुर जरिये राजस्व निरीक्षक के द्वारा रामसूचित , राजस्व निरीक्षक

निवासी: नगर निगम गोरखपुर

व्यवसाय: नौकरी

पट्टा गृहीता: 1

श्री हिन्दुस्तान उर्वरक एवं रसायन लिमिटेड जरिये वरिष्ठ प्रबन्धक के द्वारा सुबोध दीक्षित , वरिष्ठ प्रबन्धक

निवासी: हिन्दुस्तान उर्वरक एवं रसायन लिमिटेड, गोरखपुर

व्यवसाय: नौकरी

ने निष्पादन स्वीकार किया । जिनकी पहचान

पहचानकर्ता : 1

श्री अतुल कुमार , पुत्र श्री सुबाष चन्द्र राय

निवासी: ग्राम-दुघरा, पोस्ट-बनियावारी, खलीलाबाद,

संतकबीर नगर

व्यवसायः नौकरी

पहचानकर्ता : 2

श्री राजनारायण , पुत्र श्री रामउग्रह

निवासी: रामपुर चक, मानीराम, गोरखपुर

व्यवसाय: अन्य 🎗

रजिस्ट्रीकरण अधिकारी के हस्ताक्षर

ने की । प्रत्यक्षतः भद्र साक्षियों के निशान अंगूठे नियमानुसार लिए गए है ।

तिए गए ह

योगेन्द्र प्रताप सिंह उप निबंधक : सदर प्रथम

गोरखपुर

श्री दिनेश शाही निबंधक लिपिक

https://igrsup.gov.in/igrsup/showEndorsReport_html_58

1/1

CC 269218

हस्ताक्षर प्रथम पक्ष

रावस्य विरायक

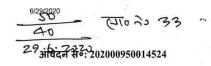
(9)

हस्ताक्षर द्वितीय पक्ष

सबोध दिक्षित

पुष्पाय विश्वात SUNDDH HIXTT गोरेड ग्रायमक Sr Manager जुस्तान उर्वेग्क एक स्मायन निमायटेड नीरमापुर HUKL Gorakhpan

साक्षीगणः-


1-3430 37MK S/0 सुबाष चत्द्व रात्र मा० दुधरा पीठवानेपाबारी खलीलावाद, सत्य नवीर नवा ZIBAKIYOJ YOSTS/O थामंड्राह् पार्केप

२५ रामपुर्ना सक्य प्रभानीराक 31/2 2014

स्थान-गोरखपुर दिनांक-29.06.2020 प्रारूपकर्ता

गीविन्द सिंह) एडवोकेट

कलेक्ट्री कचहरी,गोरखपुर

बही संख्या 1 जिल्द संख्या 16010 के पृष्ठ 357 से 382 तक क्रमांक 4293 पर दिनाँक 29/06/2020 को रजिस्ट्रीकृत किया गया।

> जिस्ट्रीकार्या अधिकारी वे हिन्ताक्षर योगेन्द्र प्रतिष सिंह उप निबंधक सदर प्रथम गोरखपुर 29/06/2020

https://igrsup.gov.in/igrsup/showEndorsReport_html_60

(Subodh Dixit)
Sr. Manager
Hindustan Urvarak & Rasayan Ltd. (HURL)
Admin Building, Fertilizer Township Gorakhpur
PO-Fertilizer Factory, Dist. - Gorakhpur-273007
Telefax – 0551-2261177

1/1